Advertisement

Logica Universalis

, Volume 12, Issue 1–2, pp 55–81 | Cite as

Is the Principle of Contradiction a Consequence of \(x^{2}=x\)?

  • Jean-Yves Beziau
Article

Abstract

According to Boole it is possible to deduce the principle of contradiction from what he calls the fundamental law of thought and expresses as \(x^{2}=x\). We examine in which framework this makes sense and up to which point it depends on notation. This leads us to make various comments on the history and philosophy of modern logic.

Keywords

Boole Principle of contradiction Laws of thought Symbolic logic Subtraction Universal logic Boolean algebra Square of opposition 

Mathematics Subject Classification

Primary 03A05 Secondary 00A30 01A55 03B53 03B22 03B05 03B10 03G05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anellis, I.H.: Van Heijenoort: Logic and its History in the Work and Writings of Jean van Heijenoort. Modern Logic Publishing, Ames (1994)MATHGoogle Scholar
  2. 2.
    Anellis, I.H. (ed.): Perspectives on the History and Philosophy of Modern Logic: Van Heijenoort Centenary, Special Issue of Logica Universalis for the Centenary of Jean van Heijenoort, vol. 6, issue 3–4 (2012)Google Scholar
  3. 3.
    Badesa, C.: The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton University Press, Princeton (2004)MATHGoogle Scholar
  4. 4.
    Badiou, A.: L’être et l’événement (English translation: Being and event, Continuum, London, 2005). Seuil, Paris (1988)Google Scholar
  5. 5.
    Bar-Am, N.: Extensionalism: The Revolution in Logic. Springer, Dordrecht (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Batens, D., Mortensen, C., Priest, G., van Bendegem, J.P. (eds.): Frontiers of Paraconsistent Logic. Research Studies Press, Baldock (2000)Google Scholar
  7. 7.
    Bellin, G., Carrara, M., Chiffi, D., Menti, A.: Pragmatic and dialogic interpretations of bi-intuitionism, part I. Log. Log. Philos. 23, 449–480 (2014)MathSciNetMATHGoogle Scholar
  8. 8.
    Beziau, J.-Y.: Identity, logic and structure. Bull. Sect. Log. 25, 89–94 (1996)MATHGoogle Scholar
  9. 9.
    Beziau, J.-Y.: Logic may be simple. Log. Log. Philos. 5, 129–147 (1997)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Beziau, J.-Y.: The mathematical structure of logical syntax. In: Carnielli, W.A., D’Ottaviano, I.M.L. (eds.) Advances in Contemporary Logic and Computer Science, pp. 1–17. American Mathematical Society, Providence (1999)Google Scholar
  11. 11.
    Beziau, J.-Y.: What is paraconsistent logic? In: Batens, D. (ed.) Frontiers of Paraconsistent Logic, pp. 95–111. Research Studies Press, Baldock (2000)Google Scholar
  12. 12.
    Beziau, J.-Y.: What is classical propositional logic? Log. Investig. 8, 266–277 (2001)MATHGoogle Scholar
  13. 13.
    Beziau, J.-Y.: The philosophical import of Polish logic. In: Talasiewicz, M. (ed.) Methodology and Philosophy of Science at Warsaw University, pp. 109–124. Semper, Warsaw (2002)Google Scholar
  14. 14.
    Beziau, J.-Y.: Le château de la quantification et ses fantômes démasqués. In: Joray, P. (ed.) La quantification dans la logique moderne, pp. 211–260. L’Harmattan, Paris (2005)Google Scholar
  15. 15.
    Beziau, J.-Y.: Les axiomes de Tarski. In: Pouivet, R., Rebuschi, M. (eds.) La Philosophie en Pologne 1918–1939, pp. 135–149. Vrin, Paris (2006)Google Scholar
  16. 16.
    Béziau, J.-Y.: Logic is not logic. Abstracta 6, 73–102 (2010)Google Scholar
  17. 17.
    Beziau, J.-Y.: History of truth-values. In: Gabbay, D.M., Pelletier, J., Woods, J. (eds.) Handbook of the History of Logic, Vol. 11—Logic: A History of its Central Concepts, pp. 233–305. Elsevier, Amsterdam (2012)Google Scholar
  18. 18.
    Beziau, J.Y. (ed.): Universal Logic : An Anthology. Birkhäuser, Basel (2012)MATHGoogle Scholar
  19. 19.
    Beziau, J.-Y.: The power of the hexagon. Log. Univers. 6, 1–43 (2012)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Beziau, J.-Y.: Round squares are no contradictions. In: New Directions in Paraconsistent Logic. Springer, New Delhi, pp. 39–55 (2015)Google Scholar
  21. 21.
    Beziau, J.-Y.: Disentangling contradiction from contrariety via incompatibility. Log. Univers. 10, 157–170 (2016)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Beziau, J.-Y.: Two genuine 3-valued paraconsistent logics. In: Akama, S. (ed.) Towards Paraconsistent Engineering, pp. 35–47. Springer, Cham (2016)CrossRefGoogle Scholar
  23. 23.
    Beziau, J.-Y.: An analogical hexagon. Int. J. Approx. Reason. 94, 1–17 (2018)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Beziau, J.-Y., Carnielli, W.A., Gabbay, D.M. (eds.): Handbook of Paraconsistency. College Publication, London (2007)MATHGoogle Scholar
  25. 25.
    Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.): New Directions in Paraconsistent Logic. Springer, New Delhi (2015)Google Scholar
  26. 26.
    Beziau, J.-Y., Silvestre, R. (eds.) Logic and Religion. Logica Universalis 11, 1–12 (2017)Google Scholar
  27. 27.
    Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 31, 433–454 (1935)CrossRefMATHGoogle Scholar
  28. 28.
    Blanché, R.: Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log. 22, 17–18 (1957)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Bloom, L.S., Suszko, R.: Investigations into the sentential calculus with identity. Notre Dame J. Form. Log. 13, 289–308 (1972)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Bocheński, J.M.: Soviet logic. In: Bochenski, Blakeley, pp. 29–38 (1961)Google Scholar
  31. 31.
    Bocheński, J.M., Blakeley, T.J. (eds.): Studies in Soviet Thought. Springer, Dodrecht (1961)Google Scholar
  32. 32.
    Boole, G.: An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities. MacMillan, London (1854)CrossRefMATHGoogle Scholar
  33. 33.
    Boole, M.E.: Philosophy and Fun of Algebra. C.W. Daniel, London (1909)MATHGoogle Scholar
  34. 34.
    Bourbaki, N.: L’architecture des mathématiques—La mathématique ou les mathématiques. In: le Lionnais, F. (ed.) Les grands courants de la pensée mathématique, Cahier du Sud, (pp. 35–47) (Translated as “The architecture of mathematics”. American Mathematical Monthly 57, 221–232) (1950)Google Scholar
  35. 35.
    Burris, S.: The laws of Boole’s thought (2000). Unpublished, available on the webpage of the author. https://www.math.uwaterloo.ca/~snburris/
  36. 36.
    Carnielli, W.A., Coniglio, M., D’Ottaviano, I.M. (eds.): Paraconsistency: The Logical Way to the Inconsistent. Marcel Dekker, New York (2002)Google Scholar
  37. 37.
    Chang, C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)MATHGoogle Scholar
  38. 38.
    Corry, L.: Modern Algebra and the Rise of Mathematical Structures. Birkhäuser, Basel (2004)CrossRefMATHGoogle Scholar
  39. 39.
    Corcoran, J.: “George Boole”, Encyclopedia of Philosophy, 2nd edn. Macmillan, Detroit (2006)Google Scholar
  40. 40.
    Corcoran, J., Miguel Sagüillob, J.M.: The absence of multiple universes of discourse in the 1936, Tarski consequence-definition paper. Hist. Philos. Log. 32, 359–374 (2011)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    da Costa, N.C.A., Béziau, J.-Y., Bueno, O.A.S.: Paraconsistent logic in a historical perspective. Log. Anal. 38(150—-152), 111–125 (1995)MathSciNetMATHGoogle Scholar
  42. 42.
    Couturat, L.: L’algèbre de la logique, Gauthier Villars, Paris, 1905 The algebra of logic, authorized English translation by Lydia Gillingham Robinson with a preface by Philip E.B. Jourdain, Open Court, London and Chicago (1914)Google Scholar
  43. 43.
    Couturat, L.: La logique de Leibniz, d’après des documents inédits. Felix Alcan, Paris (1904)MATHGoogle Scholar
  44. 44.
    Curry, H.: Leçons de logique algébrique, Nauwelaerts, Louvain and Gauthiers-Villars, Paris 1952, Translation and presentation by J. Seldin of the two first chapters in Beziau (ed) 2012Google Scholar
  45. 45.
    Dershowitz, N., Plaisted, D.: Chapter 9: Rewriting. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning. MIT Press, Cambridge (2001)Google Scholar
  46. 46.
    Ducasse, C.J., Curry, H.B.: Early history of the association for symbolic logic. J. Symb. Log. 27, 255–258 (1962)CrossRefGoogle Scholar
  47. 47.
    Durand-Richard, M.-J.: George Peacock (1791–1858): La Synthèse Algébrique comme Loi Symbolique dans l’Angleterre des Réformes, these de docrorat. EHEES, Paris (1985)Google Scholar
  48. 48.
    Durand-Richard, M.-J.: Opération, fonction et signification de Boole à Frege. Cahiers Critiques de Philosophie 3, 99–128 (2007)Google Scholar
  49. 49.
    Durand-Richard, M.-J.: Autour de George Peacock: comment fonder une conception symbolique des opérations. In: Sinègre, L. (ed.) Histoire du calcul de la géométrie à l’algèbre, pp. 229–246. Vuibert, Paris (2009)Google Scholar
  50. 50.
    Durand-Richard, M.-J.: De l’algèbre symbolique à la théorie des modèles : structuration de l’analogie comme méthode démonstrative. In: Durand-Richard, M.-J. (ed.) Le statut de l’analogie dans la démarche scientifique, Perspective historique, pp. 131–169. L’Harmattan, Paris (2007)Google Scholar
  51. 51.
    Feferman, A.B.: Politics, Logic and Love: The life of Jean van Heijenoort. A.K. Peters, Wellesey (1993)MATHGoogle Scholar
  52. 52.
    Feferman, A.B.: Jean van Heijenoort: Kaleidoscope. Log. Univers. 6, 277–291 (2012)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Frege, G.: Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Louis Nebertm Halle (1879)Google Scholar
  54. 54.
    Friend, M.: Boole: from calculating numbers to calculating thoughts. In: Ferreira, F. (ed.) Programs, Proofs, Processes. Lectures Notes in Computer Science, pp. 172–179. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  55. 55.
    Gillings, R.J.: The so-called Euler-Diderot incident. Am. Math. Mon. 61, 77–80 (1954)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    Glivenko, V.: Théorie générale des structures. Hermann, Paris (1938)MATHGoogle Scholar
  57. 57.
    Grattan-Guiness, I.: The Search for Mathematical Roots 1870–1940 (Logics, Set Theories and the Foundations of Mathematics from Carnot through Russell to Gödel). Princeton University Press, Princeton (2000)MATHGoogle Scholar
  58. 58.
    Hailpern, T.: Boole’s algebra isn’t Boolean algebra. Math. Mag. 54, 172–184 (1981)MathSciNetGoogle Scholar
  59. 59.
    Halmos, P.R.: How to write mathematics. L’Enseignement Math. 16, 123–152 (1970)MathSciNetMATHGoogle Scholar
  60. 60.
    Hernández-Tello, A., Ramírez, A., Galindo, M.Osorio: The pursuit of an implication for the logics L3A and L3B. Log. Univers. 11, 507–524 (2017)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Hilbert, D., Ackermann, W.: Grundzüge der Theoretischen Logik. Springer, Berlin (1928)MATHGoogle Scholar
  62. 62.
    Hodges, W.: Truth in a structure. Proc. Aristot. Soc. 86, 135–151 (1985–1986)Google Scholar
  63. 63.
    Jacquette, D.: Boole’s logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic, Vol. 4—British Logic in the Nineteenth Century, pp. 331–379. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  64. 64.
    Küng, G.: Mathematical logic in the Soviet Union (1917–1947 and 1947–1957). In: Bocheński, Blakeley, pp. 39–43 (1961)Google Scholar
  65. 65.
    Lobkowicz, N.: The principle of contradiction in recent Soviet philosophy. In: Bocheński, Blakeley, pp. 44–51 (1961)Google Scholar
  66. 66.
    Łukasiewicz, J.: O zasadzie sprzecznosci u Arystotelesa, p. 1910. Studium krytyczne, Kraków (1910)Google Scholar
  67. 67.
    Peckhaus, V.: The mathematical origins of nineteenth-century algebra of logic. In: Haaparanta, L. (ed.) The Development of Modern Logic. Oxford University Press, Oxford (2009)Google Scholar
  68. 68.
    Prade, H., Richard, G.: From analogical proportion to logical proportions. Log. Univers. 7, 441–505 (2013)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Scott, D.: Completeness and axiomatizability in many-valued logic. In: Henkin, L. (ed.) Proceedings of the Tarski Symposium, pp. 188–197. American Mathematical Society, Providence (1974)Google Scholar
  70. 70.
    Shramko, Y.: Dual Intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Log. 80, 347–367 (2005)MathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Serfati, M.: La revolution symbolique. La constitution de l’écriture symbolique mathématique. Pétra, Paris (2005)MATHGoogle Scholar
  72. 72.
    Smith, N.J.: Frege’s judgement stroke and the conception of logic as the study of inference not consequence. Philos. Compass 4, 639–665 (2009)CrossRefGoogle Scholar
  73. 73.
    Smuyllan, R.: The Magic, Music and Mathematics. World Scientific, Singapore (2015)Google Scholar
  74. 74.
    Stone, M.: Subsomption of the theory of Boolean algebras under the theory of rings. Proc. Natl. Acad. Sci. 21, 103–105 (1935)CrossRefMATHGoogle Scholar
  75. 75.
    Stone, M.: The theory of representation for Boolean algebra. Trans. Am. Math. Soc. 40, 37–111 (1936)MathSciNetMATHGoogle Scholar
  76. 76.
    Surma, S.J.: On the origin and subsequent applications of the concept of Lindenbaum algebra. In: Cohen, L.J., Los, J., Pfeiffer, H., Podewski, K.-D. (eds.) Logic, Methodology and Philosophy of Science VI. North-Holland, Amsterdam (1982)Google Scholar
  77. 77.
    Tanaka, K., Berto, F., Mares, E., Paoli, F.: Paraconsistency: Logic and Applications. Springer, Dordrecht (2013)CrossRefMATHGoogle Scholar
  78. 78.
    Tarski, A.: Grundzüge des Systemankalküls, Erster Teil. Fundam. Math. 25, 503–526 (1935)CrossRefGoogle Scholar
  79. 79.
    Tarski, A.: O pojciu wynikania logicznego. Przeglad Folozoficzny 39, 58–68 (1936)Google Scholar
  80. 80.
    Tarski, A.: Logic, Semantics, Metamathematics, 2nd edn. Hackett, Indianapolis (1983). (First edition, Oxford, 1956)Google Scholar
  81. 81.
    Tarski, A.: Collected Papers, 4 Volumes, ed. by S. Givant and R. McKenzie. Birkhäuser, Basel (1986)MATHGoogle Scholar
  82. 82.
    Tarski, A.: Contributions to the theory of models: I, II, III. In: Indigationes Mathematicae vol. 16 (1954) (pp. 572–581, pp. 582–588, vol. 17 (1955), pp. 56–64)Google Scholar
  83. 83.
    Tarski, A.: Drei Briefe an Otto Neurath. Grazer Philos. Stud. 43, 1–32 (1992)CrossRefGoogle Scholar
  84. 84.
    van Heijenoort, J. (ed.): From Frege to Gödel, A Source Book of Mathematical Logic, pp. 1879–1931. Harvard University Press, Cambridge (1967)MATHGoogle Scholar
  85. 85.
    van Heijenoort, J.: Friedrich Engels and mathematics (1948). In: Selected Essays, pp. 123–151. Bibliopolis, Naples (1985)Google Scholar
  86. 86.
    van Heijenoort, J.: Historical development of modern logic. Log. Univers. 6, 327–337 (2012)MathSciNetCrossRefMATHGoogle Scholar
  87. 87.
    Venn, J.: Symbolic Logic. MacMillan, London (1881)CrossRefMATHGoogle Scholar
  88. 88.
    Whitehead, A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge (1898)MATHGoogle Scholar
  89. 89.
    Whitehead, A.N., Russell, B.: Principia Mathematica. Cambridge University Press, Cambridge (1910–1913)Google Scholar
  90. 90.
    Wybraniec-Skardowska, U.: Logical squares for classical Logic sentences. Log. Univers. 10, 293–312 (2016)MathSciNetCrossRefMATHGoogle Scholar
  91. 91.
    Zygmunt, J., Purdy, R.: Adolf Lindenbaum: Notes on his life, with bibliography and selected references. Log. Univers. 8, 285–320 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Brazilian Research CouncilUniversity of BrazilRio de JaneiroBrazil
  2. 2.Ecole Normale SupérieureParisFrance

Personalised recommendations