Venn Diagram with Names of Individuals and Their Absence: A Non-classical Diagram Logic


Venn diagram system has been extended by introducing names of individuals and their absence. Absence gives a kind of negation of singular propositions. We have offered here a non-classical interpretation of this negation. Soundness and completeness of the present diagram system have been established with respect to this interpretation.

This is a preview of subscription content, log in to check access.


  1. 1.

    Allwein, G., Barwise, J. (eds.): Logical Reasoning with Diagrams. Oxford University Press, Oxford (1996)

    Google Scholar 

  2. 2.

    Burton, J., Chakraborty, M.K., Choudhury, L., Stapleton, G.: Minimizing Clutter using Absence in Venn-i\(_{e}\), Diagrammatic Representation and Inference, LNCS, vol. 9781, pp. 107–122. Spinger, Berlin (2016)

    Google Scholar 

  3. 3.

    Choudhury, L., Chakraborty, M.K.: On extending Venn diagram by augmenting names of individuals. In: Blackwell, A., et al., (eds.) Diagrammatic Representation and Inference, pp. 142–146. Springer, Berlin (2004)

  4. 4.

    Choudhury, L., Chakraborty, M.K.: Comparison between Spider diagrams and Venn diagrams with individuals. In: Proceedings of the workshop Euler Diagrams 2005, INRIA, Paris, pp. 13–17 (2005)

  5. 5.

    Choudhury, L., Chakraborty, M.K.: On representing open universe. Stud. Log. 5(1), 96–112 (2012)

    Google Scholar 

  6. 6.

    Choudhury, L., Chakraborty, M.K.: Singular propositions, negation and the square of opposition. Log. Univ. 10(2–3), 215–231 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Datta, S.: The Ontology of Negation, Jadavpur Studies in Philosophy, in collaboration with K. P. Bagchi and Co., Kolkata (1991)

  8. 8.

    Euler, L.: Lettres ‘a une Princesse d’Allemagne. l’Academie Imperiale desSciences, St. Petersburg (1768)

  9. 9.

    Gil, J., Howse, J., Kent, S.: Formalizing Spider diagrams. In: Proceedings of the IEEE Symposium on Visual Languages (VL 99), Tokyo, pp. 130–137 (1999)

  10. 10.

    Gurr, C.: Effective diagramatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)

    Article  Google Scholar 

  11. 11.

    Hammer, E.: Logic and Visual Information. CSLI Pubs, Stanford (1995)

    Google Scholar 

  12. 12.

    Howse, J., Molina, F., Taylor, J., Kent, S., Gill, J.: Spider diagrams: a diagrammatic reasoning system. J. Vis. Lang. Comput. 12(3), 299–324 (2001)

    Article  Google Scholar 

  13. 13.

    Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams, pp. 145–194. London Mathematical Society, London (2005)

    Google Scholar 

  14. 14.

    Peirce, C.S.: Collected Papers of C.S.Peirce, vol. iv. HUP (1933)

  15. 15.

    Shin, S.J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  16. 16.

    Stapleton, G.: A survey of reasoning systems based on Euler diagram. In: Proceedings of the First International Workshop on Euler Diagrams, vol. 134, pp. 127–151 (2005)

  17. 17.

    Stapleton, G.: Incorporating negation into visual logics: a case study using Euler diagrams. 13th International Conference on Distributed Multimedia Systems. In: Visual Languages and Computing, DMS’2007, 6–8th September, San Francisco, United States, pp. 187–194 (2007)

  18. 18.

    Stapleton, G., Howse, J., Taylor, J., Thompson, S.: The expressiveness of spider diagram augmented with constants. J Vis Lang Comput 20, 30–49 (2009)

    Article  Google Scholar 

  19. 19.

    Stapleton, G., Blake, A., Choudhury, L., Chakraborty, M., Burton, J.: Presence and absence of individuals in diagrammatic logics: an empirical comparison. Stud Log 2006(82), 1–24 (2016)

    Google Scholar 

  20. 20.

    Swoboda, N.: Implementing Euler/Venn reasoning systems. In: Anderson, M., Meyer, B., Oliver, P. (eds.) Diagramatic Representation and Reasoning, pp. 371–386. Springer, Heidelberg (2001)

  21. 21.

    Venn, J.: Symbolic Logic, 2d edn. Macmilan, London (1894)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mihir Kr. Chakraborty.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, R., Chakraborty, M.K. & Choudhury, L. Venn Diagram with Names of Individuals and Their Absence: A Non-classical Diagram Logic. Log. Univers. 12, 141–206 (2018).

Download citation

Mathematics Subject Classification

  • Primary 03B99
  • Secondary 00A66


  • Diagram logic
  • absence of individuals
  • completeness
  • non-classical semantics