Logica Universalis

, Volume 12, Issue 1–2, pp 141–206 | Cite as

Venn Diagram with Names of Individuals and Their Absence: A Non-classical Diagram Logic

  • Reetu Bhattacharjee
  • Mihir Kr. Chakraborty
  • Lopamudra Choudhury
Article

Abstract

Venn diagram system has been extended by introducing names of individuals and their absence. Absence gives a kind of negation of singular propositions. We have offered here a non-classical interpretation of this negation. Soundness and completeness of the present diagram system have been established with respect to this interpretation.

Keywords

Diagram logic absence of individuals completeness non-classical semantics 

Mathematics Subject Classification

Primary 03B99 Secondary 00A66 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allwein, G., Barwise, J. (eds.): Logical Reasoning with Diagrams. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  2. 2.
    Burton, J., Chakraborty, M.K., Choudhury, L., Stapleton, G.: Minimizing Clutter using Absence in Venn-i\(_{e}\), Diagrammatic Representation and Inference, LNCS, vol. 9781, pp. 107–122. Spinger, Berlin (2016)CrossRefGoogle Scholar
  3. 3.
    Choudhury, L., Chakraborty, M.K.: On extending Venn diagram by augmenting names of individuals. In: Blackwell, A., et al., (eds.) Diagrammatic Representation and Inference, pp. 142–146. Springer, Berlin (2004)Google Scholar
  4. 4.
    Choudhury, L., Chakraborty, M.K.: Comparison between Spider diagrams and Venn diagrams with individuals. In: Proceedings of the workshop Euler Diagrams 2005, INRIA, Paris, pp. 13–17 (2005)Google Scholar
  5. 5.
    Choudhury, L., Chakraborty, M.K.: On representing open universe. Stud. Log. 5(1), 96–112 (2012)Google Scholar
  6. 6.
    Choudhury, L., Chakraborty, M.K.: Singular propositions, negation and the square of opposition. Log. Univ. 10(2–3), 215–231 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Datta, S.: The Ontology of Negation, Jadavpur Studies in Philosophy, in collaboration with K. P. Bagchi and Co., Kolkata (1991)Google Scholar
  8. 8.
    Euler, L.: Lettres ‘a une Princesse d’Allemagne. l’Academie Imperiale desSciences, St. Petersburg (1768)Google Scholar
  9. 9.
    Gil, J., Howse, J., Kent, S.: Formalizing Spider diagrams. In: Proceedings of the IEEE Symposium on Visual Languages (VL 99), Tokyo, pp. 130–137 (1999)Google Scholar
  10. 10.
    Gurr, C.: Effective diagramatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)CrossRefGoogle Scholar
  11. 11.
    Hammer, E.: Logic and Visual Information. CSLI Pubs, Stanford (1995)MATHGoogle Scholar
  12. 12.
    Howse, J., Molina, F., Taylor, J., Kent, S., Gill, J.: Spider diagrams: a diagrammatic reasoning system. J. Vis. Lang. Comput. 12(3), 299–324 (2001)CrossRefGoogle Scholar
  13. 13.
    Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams, pp. 145–194. London Mathematical Society, London (2005)MATHGoogle Scholar
  14. 14.
    Peirce, C.S.: Collected Papers of C.S.Peirce, vol. iv. HUP (1933)Google Scholar
  15. 15.
    Shin, S.J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  16. 16.
    Stapleton, G.: A survey of reasoning systems based on Euler diagram. In: Proceedings of the First International Workshop on Euler Diagrams, vol. 134, pp. 127–151 (2005)Google Scholar
  17. 17.
    Stapleton, G.: Incorporating negation into visual logics: a case study using Euler diagrams. 13th International Conference on Distributed Multimedia Systems. In: Visual Languages and Computing, DMS’2007, 6–8th September, San Francisco, United States, pp. 187–194 (2007)Google Scholar
  18. 18.
    Stapleton, G., Howse, J., Taylor, J., Thompson, S.: The expressiveness of spider diagram augmented with constants. J Vis Lang Comput 20, 30–49 (2009)CrossRefGoogle Scholar
  19. 19.
    Stapleton, G., Blake, A., Choudhury, L., Chakraborty, M., Burton, J.: Presence and absence of individuals in diagrammatic logics: an empirical comparison. Stud Log 2006(82), 1–24 (2016)Google Scholar
  20. 20.
    Swoboda, N.: Implementing Euler/Venn reasoning systems. In: Anderson, M., Meyer, B., Oliver, P. (eds.) Diagramatic Representation and Reasoning, pp. 371–386. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Venn, J.: Symbolic Logic, 2d edn. Macmilan, London (1894)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reetu Bhattacharjee
    • 1
  • Mihir Kr. Chakraborty
    • 1
  • Lopamudra Choudhury
    • 1
  1. 1.Jadavpur UniversityKolkataIndia

Personalised recommendations