Logica Universalis

, Volume 12, Issue 1–2, pp 141–206 | Cite as

Venn Diagram with Names of Individuals and Their Absence: A Non-classical Diagram Logic

  • Reetu Bhattacharjee
  • Mihir Kr. ChakrabortyEmail author
  • Lopamudra Choudhury


Venn diagram system has been extended by introducing names of individuals and their absence. Absence gives a kind of negation of singular propositions. We have offered here a non-classical interpretation of this negation. Soundness and completeness of the present diagram system have been established with respect to this interpretation.


Diagram logic absence of individuals completeness non-classical semantics 

Mathematics Subject Classification

Primary 03B99 Secondary 00A66 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allwein, G., Barwise, J. (eds.): Logical Reasoning with Diagrams. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  2. 2.
    Burton, J., Chakraborty, M.K., Choudhury, L., Stapleton, G.: Minimizing Clutter using Absence in Venn-i\(_{e}\), Diagrammatic Representation and Inference, LNCS, vol. 9781, pp. 107–122. Spinger, Berlin (2016)CrossRefGoogle Scholar
  3. 3.
    Choudhury, L., Chakraborty, M.K.: On extending Venn diagram by augmenting names of individuals. In: Blackwell, A., et al., (eds.) Diagrammatic Representation and Inference, pp. 142–146. Springer, Berlin (2004)Google Scholar
  4. 4.
    Choudhury, L., Chakraborty, M.K.: Comparison between Spider diagrams and Venn diagrams with individuals. In: Proceedings of the workshop Euler Diagrams 2005, INRIA, Paris, pp. 13–17 (2005)Google Scholar
  5. 5.
    Choudhury, L., Chakraborty, M.K.: On representing open universe. Stud. Log. 5(1), 96–112 (2012)Google Scholar
  6. 6.
    Choudhury, L., Chakraborty, M.K.: Singular propositions, negation and the square of opposition. Log. Univ. 10(2–3), 215–231 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Datta, S.: The Ontology of Negation, Jadavpur Studies in Philosophy, in collaboration with K. P. Bagchi and Co., Kolkata (1991)Google Scholar
  8. 8.
    Euler, L.: Lettres ‘a une Princesse d’Allemagne. l’Academie Imperiale desSciences, St. Petersburg (1768)Google Scholar
  9. 9.
    Gil, J., Howse, J., Kent, S.: Formalizing Spider diagrams. In: Proceedings of the IEEE Symposium on Visual Languages (VL 99), Tokyo, pp. 130–137 (1999)Google Scholar
  10. 10.
    Gurr, C.: Effective diagramatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)CrossRefGoogle Scholar
  11. 11.
    Hammer, E.: Logic and Visual Information. CSLI Pubs, Stanford (1995)zbMATHGoogle Scholar
  12. 12.
    Howse, J., Molina, F., Taylor, J., Kent, S., Gill, J.: Spider diagrams: a diagrammatic reasoning system. J. Vis. Lang. Comput. 12(3), 299–324 (2001)CrossRefGoogle Scholar
  13. 13.
    Howse, J., Stapleton, G., Taylor, J.: Spider Diagrams, pp. 145–194. London Mathematical Society, London (2005)zbMATHGoogle Scholar
  14. 14.
    Peirce, C.S.: Collected Papers of C.S.Peirce, vol. iv. HUP (1933)Google Scholar
  15. 15.
    Shin, S.J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  16. 16.
    Stapleton, G.: A survey of reasoning systems based on Euler diagram. In: Proceedings of the First International Workshop on Euler Diagrams, vol. 134, pp. 127–151 (2005)Google Scholar
  17. 17.
    Stapleton, G.: Incorporating negation into visual logics: a case study using Euler diagrams. 13th International Conference on Distributed Multimedia Systems. In: Visual Languages and Computing, DMS’2007, 6–8th September, San Francisco, United States, pp. 187–194 (2007)Google Scholar
  18. 18.
    Stapleton, G., Howse, J., Taylor, J., Thompson, S.: The expressiveness of spider diagram augmented with constants. J Vis Lang Comput 20, 30–49 (2009)CrossRefGoogle Scholar
  19. 19.
    Stapleton, G., Blake, A., Choudhury, L., Chakraborty, M., Burton, J.: Presence and absence of individuals in diagrammatic logics: an empirical comparison. Stud Log 2006(82), 1–24 (2016)Google Scholar
  20. 20.
    Swoboda, N.: Implementing Euler/Venn reasoning systems. In: Anderson, M., Meyer, B., Oliver, P. (eds.) Diagramatic Representation and Reasoning, pp. 371–386. Springer, Heidelberg (2001)Google Scholar
  21. 21.
    Venn, J.: Symbolic Logic, 2d edn. Macmilan, London (1894)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Reetu Bhattacharjee
    • 1
  • Mihir Kr. Chakraborty
    • 1
    Email author
  • Lopamudra Choudhury
    • 1
  1. 1.Jadavpur UniversityKolkataIndia

Personalised recommendations