A Characterisation of Some \(\mathbf {Z}\)-Like Logics


In Béziau (Log Log Philos 15:99–111, 2006) a logic \(\mathbf {Z}\) was defined with the help of the modal logic \(\mathbf {S5}\). In it, the negation operator is understood as meaning ‘it is not necessary that’. The strong soundness–completeness result for \(\mathbf {Z}\) with respect to a version of Kripke semantics was also given there. Following the formulation of \(\mathbf {Z}\) we can talk about \(\mathbf {Z}\)-like logics or Beziau-style logics if we consider other modal logics instead of \(\mathbf {S5}\)—such a possibility has been mentioned in [1]. The correspondence result between modal logics and respective Beziau-style logics has been generalised for the case of normal logics naturally leading to soundness–completeness results [see Marcos (Log Anal 48(189–192):279–300, 2005) and Mruczek-Nasieniewska and Nasieniewski (Bull Sect Log 34(4):229–248, 2005)]. In Mruczek-Nasieniewska and Nasieniewski (Bull Sect Log 37(3–4):185–196, 2008), (Bull Sect Log 38(3–4):189–203, 2009) some partial results for non-normal cases are given. In the present paper we try to give similar but more general correspondence results for the non-normal-worlds case. To achieve this aim we have to enrich original Beziau’s language with an additional negation operator understood as ‘it is necessary that not’.


  1. 1.

    Béziau, J.-Y.: The paraconsistent logic \(\text{ Z }\). Log. Log. Philos. 15, 99–111 (2006)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Došen, K.: Negative modal operators in intuitionistic logic. Publ. L’Inst. Math. Nouvelle Sér. 35(49), 3–14 (1984)

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Došen, K.: Negation as modal operator. Rep. Math. Log. 20, 15–27 (1986)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Jaśkowski, S.: Rachunek zdań dla systemów dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis Sect. A, I(5), 57–77 (in Polish). Propositional Calculus for Contradictory Deductive Systems. Studia Logica 24, 143–157 (1969) and A Propositional Calculus for Inconsistent Deductive systems. Logic and Logical Philosophy 7, 35–56 (1999). https://doi.org/10.12775/LLP.1999.003

  5. 5.

    Kripke, S.A.: Semantical analysis of modal logic II. Non-normal modal propositional calculi. In: Symposium on the Theory of Models, pp. 206–220. North-Holland Publ. Co., Amsterdam (1965)

  6. 6.

    Lemmon, E.J.: New fundations for lewis modal systems. J. Symb. Log. 22(2), 176–186 (1957). https://doi.org/10.2307/2964179

    Article  MATH  Google Scholar 

  7. 7.

    Marcos, J.: Nearly every normal modal logic is paranormal. Log. Anal. 48(189–192), 279–300 (2005)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Mruczek-Nasieniewska, K., Nasieniewski, M.: Syntactical and semantical characterization of a class of paraconsistent logics. Bull. Sect. Log. 34(4), 229–248 (2005)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Mruczek-Nasieniewska, K., Nasieniewski, M.: Paraconsistent logics obtained by J.-Y. Béziau’s method by means of some non-normal modal logics. Bull. Sect. Log. 37(3–4), 185–196 (2008)

    MATH  Google Scholar 

  10. 10.

    Mruczek-Nasieniewska, K., Nasieniewski, M.: Béziau’s logics obtained by means of quasi-regular logics. Bull. Sect. Log. 38(3–4), 189–203 (2009)

    MATH  Google Scholar 

  11. 11.

    Stanisław, J.: O koniunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis, Sect. A, I(8), 171–172 (1942) (in Polish). On The Discussive Conjunction in the Propositional Calculus for Inconsistent Deductive Systems. Logic and Logical Philosophy 7, 57–59 (1999). https://doi.org/10.12775/LLP.1999.004

Download references

Author information



Corresponding author

Correspondence to Marek Nasieniewski.

Additional information

This work was completed with the partial support of Polish National Science Centre (NCN), Grant No. 2016/23/B/HS1/00344.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mruczek-Nasieniewska, K., Nasieniewski, M. A Characterisation of Some \(\mathbf {Z}\)-Like Logics. Log. Univers. 12, 207–219 (2018). https://doi.org/10.1007/s11787-018-0184-9

Download citation


  • Beziau’s logic \(\mathbf {Z}\)
  • Kripke semantics
  • modal logics
  • non-normal worlds
  • completeness
  • modalized negations

Mathematics Subject Classification

  • Primary 03B53
  • Secondary 03B45
  • 03B22