Logica Universalis

, Volume 11, Issue 4, pp 525–532 | Cite as

Natural Deduction for Fitting’s Four-Valued Generalizations of Kleene’s Logics

  • Yaroslav I. Petrukhin


In this paper, we present sound and complete natural deduction systems for Fitting’s four-valued generalizations of Kleene’s three-valued regular logics.


Three-valued logics four-valued logics natural deduction system Kleene’s logics 

Mathematics Subject Classification

Primary 03B50 Secondary 03B22 03F03 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asenjo, F.G.: A calculus of antinomies. Notre Dame J. Formal Log. 7, 103–105 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Belikov, A.A.: Axiomatization of Dunn–Belnap’s logic with the sole designated value (in Russian). In: The Proceeding of the 9th Smirnov Readings in Logic. Moscow: Contemporary Notebooks, pp. 53–55 (2015)Google Scholar
  3. 3.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-valued Logic. Reidel Publishing Company, Boston, pp. 7–37 (1977)Google Scholar
  4. 4.
    Belnap, N.D.: How a computer should think. In: Rule, G. (ed.) Contemporary Aspects of Philosophy. Oriel Press Ltd, Stocksfield, pp. 30–56 (1977)Google Scholar
  5. 5.
    Bochvar, D.A.: On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus. Hist. Philos. Log. 2, 87–112 (1981). FCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bonzio, S., Gil-Férez, J., Paoli, F., Peruzzi, L.: On paraconsistent weak kleene logic: axiomatisation and algebraic analysis. Stud. Log. 105, 253–297 (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bolotov, A., Shangin, V.: Natural deduction system in paraconsistent setting: proof search for PCont. J. Intell. Syst. 21, 1–24 (2012)CrossRefGoogle Scholar
  8. 8.
    Dunn, J.M.: Intuitive semantics for first-degree entailment and coupled trees. Philos. Stud. 29, 149–168 (1976)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fitting, M.: Kleene’s logic, generalized. J. Log. Comput. 1, 797–810 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fitting, M.: Kleene’s three valued logics and their children. Fundam. Inform. 20, 113–131 (1994)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Fitting, M.: Negation as refutation. In: Parikh, R. (ed.) Proceedings of the Fourth Annual Symposium on Logic in Computer Science, IEEE, pp. 63–70 (1989)Google Scholar
  12. 12.
    Halldén, S.: The Logic of Nonsense. Lundequista Bokhandeln, Uppsala (1949)zbMATHGoogle Scholar
  13. 13.
    Kleene, S.C.: Introduction to metamathematics. Sixth Reprint, Wolters-Noordhoff Publishing and North-Holland Publishing Company (1971)Google Scholar
  14. 14.
    Kleene, S.C.: On a notation for ordinal numbers. J. Symb. Log. 3(1), 150–155 (1938)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Komendantskaya, E.Y.: Functional expressibility of regular Kleene’s logics (in Russian). Log. Investig. 15, 116–128 (2009)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Kooi, B., Tamminga, A.: Completeness via correspondence for extensions of the logic of paradox. Rev. Symb. Log. 5(4), 720–730 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Łukasiewicz, J.: On three-valued logic. In: Borkowski, L. (ed.) Jan Łukasiewicz: Selected Works, Amsterdam, North-Holland Publishing Company, pp. 87–88 (1997). English translation of Łukasiewicz’s paper of 1920Google Scholar
  18. 18.
    Petrukhin, Y.I.: Correspondence analysis for first degree entailment. Log. Investig. 22(1), 108–124 (2016)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Petrukhin, Y.: Natural deduction for three-valued regular logics. Log. Log. Philos. Online first article, pp. 1–10 (2016). doi: 10.12775/LLP.2016.025
  20. 20.
    Petrukhin, Y.: Natural deduction for four-valued both regular and monotonic logics. Log. Log. Philos. Online first article, pp. 1–14 (2017). doi: 10.12775/LLP.2017.001
  21. 21.
    Pietz, A., Rivieccio, U.: Nothing but the truth. J. Philos. Log. 42, 125–135 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Priest, G.: Paraconsistent logic. In: Gabbay, M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, 2nd edn, pp. 287–393. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  23. 23.
    Priest, G.: The logic of paradox. J. Philos. Log. 8, 219–241 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Tamminga, A.: Correspondence analysis for strong three-valued logic. Log. Investig. 20, 255–268 (2014)zbMATHMathSciNetGoogle Scholar
  25. 25.
    Tomova, N.E.: About four-valued regular logics (in Russian). Log. Investig. 15, 223–228 (2009)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations