Bezhanishvili, G., Bezhanishvili, N., Gabelaia, D., Kurz, A.: Bitopological duality for distributive lattices and Heyting algebras. Math. Struct. Comput. Sci. 20, 359–393 (2010)
MathSciNet
Article
MATH
Google Scholar
Bezhanishvili, G., Mines, R., Morandi, P.J.: Topo-canonical completions of closure algebras and Heyting algebras. Algebra Univers. 58, 1–34 (2008)
MathSciNet
Article
MATH
Google Scholar
Bloom, S.L., Brown, D.J.: Classical abstract logics. Diss. Math. 102, 43–51 (1973)
MATH
Google Scholar
Blok, W., Pigozzi, D.: Algebraizable logics, vol. 396. Memoirs of the American Mathematical Society, Providence (1989)
MATH
Google Scholar
Brown, D.J., Suszko, R.: Abstract logics. Diss. Math. 102, 9–42 (1973)
MathSciNet
MATH
Google Scholar
Brunner, A.B.M., Lewitzka, S.: Topological Representation of Intuitionistic and Abstract Logics, Abstract Published in XVI. Encontro Brasileiro de Lógica, Petrópolis, Rio de Janeiro (2011)
Google Scholar
Caleiro, C., Gonçalves, R.: Equipollent logical systems. In: Beziau, J.Y. (ed.) Logica Universalis: Towards a General Theory of Logic, 2nd edn. Birkhaeuser Verlag, Basel (2007)
Google Scholar
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)
Book
MATH
Google Scholar
Eiben, Á.E., Janossy, A., Kurucz, Á.: Combining algebraizable logics. Notre Dame J. Form Log 37(2), 366–380 (1996)
MathSciNet
Article
MATH
Google Scholar
Fiorentini, C.: Kripke completeness for intermediate logics. PhD. Thesis (2000)
Fitting, M.: Intuitionistic logic, model theory and forcing. North Holland, Amsterdam (1969)
MATH
Google Scholar
Font, J.M., Verdú, V.: A first approach to abstract modal logics. J. Symb. Log. 54, 1042–1062 (1989)
MathSciNet
Article
MATH
Google Scholar
Goguen, J.A., Burstall, R.M.: Introducing institutions. Lecture Notes in Computer Science, vol. 164, pp. 221–256 (1984)
Hochster, M.: Prime ideal structure in commutative rings. Trans. AMS 142, 43–60 (1969)
MathSciNet
Article
MATH
Google Scholar
Jansana, R.: Propositional consequence relations and algebraic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Spring 2011 edn. http://plato.stanford.edu/archives/spr2011/entries/consequence-algebraic/
Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer formalismus. Compos. Math. 4, 119–136 (1937)
MATH
Google Scholar
Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)
MATH
Google Scholar
Lewitzka, S.: Abstract logics, logic maps and logic homomorphisms. Log. Univers. 1(2), 243–276 (2007)
MathSciNet
Article
MATH
Google Scholar
Lewitzka, S.: \(\in _{4}\): A \(4\)-valued Truth Theory and Metalogic, preprint (2007)
Lewitzka, S., Brunner, A.B.M.: Minimally generated abstract logics. Log. Univers. 3(2), 219–241 (2009)
MathSciNet
Article
MATH
Google Scholar
Mendes, C.A., Mariano, H.L.: Towards a good notion of categories of logics. arXiv:1404.3780v2 (2016)
Miraglia, F.: An Introduction to Partially Ordered Structures and Sheaves, Contemporary Logic Series, vol. 1, Polimetrica International Scientific Publisher, Milan, Italy (2006)
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)
MathSciNet
Article
MATH
Google Scholar
Rasiowa, H.: An Algebraic Approach to Non-Classical Logic. North-Holland Publ. Co., Amsterdam (1974)
MATH
Google Scholar