Logica Universalis

, Volume 10, Issue 2–3, pp 135–141 | Cite as

The Vatican Square

  • Jean-Yves BeziauEmail author
  • Raffaela Giovagnoli


After explaining the interdisciplinary aspect of the series of events organized around the square of opposition since 2007, we discuss papers related to the 4th World Congress on the Square of Opposition which was organized in the Vatican at the Pontifical Lateran University in 2014. We distinguish three categories of work: those dealing with the evolution and development of the theory of opposition, those using the square as a metalogical tool to give a better understanding of various systems of logic and those related with applications of the theory of opposition to conceptual analysis and pedagogy.


Square of Opposition Hexagon of Opposition Aristotle Plato Leibniz Łukasiewicz Logic Diagrams Modal logic Fuzzy logic Negation Quantifiers Intuitionistic logic Deontic logic Metalogic Fallacies Violence Pedagogy 

Mathematics Subject Classification

Primary 03B22 Secondary 03A05 3B20 03B45 03B52 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arenhart J.R.B.: Liberating paraconsistency from contradiction. Logica Universalis 9, 523–544 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beziau, J.-Y.: Universal Logic. In: Childers, T., Majer, O. (eds.) Logica’94—Proceedings of the 8th International Symposium, Prague, pp. 73–93 (1994)Google Scholar
  3. 3.
    Beziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–232 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beziau J.-Y.: The new rising of the square. In: Beziau, J.-Y., Jacquette, D. (eds.) Around and beyond the square of opposition., Birkhäuser, Basel (2012)CrossRefGoogle Scholar
  5. 5.
    Beziau J.-Y.: The power of the hexagon. Logica Universalis, 6, 1–43 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beziau J.-Y.: The metalogical hexagon of opposition. Argumentos, 10, 111–122 (2013)Google Scholar
  7. 7.
    Beziau, J.-Y.: Round squares are no contradictions. In: Beziau, J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic, pp. 39–55. Springer, New Delhi (2016)Google Scholar
  8. 8.
    Beziau, J.-Y.: Disentangling contradiction from contrariety via incompatibility. Logica Univers. 10 (2016). doi: 10.1007/11787-016-0151-2
  9. 9.
    Beziau, J.-Y. (ed): Universal logic: an anthology. Birkhäuser, Basel (2012)zbMATHGoogle Scholar
  10. 10.
    Beziau, J.-Y. (ed): Special issue of Logica Universalis dedicated to the hexagon of opposition, vol 6, double issue 1–2 (2012)Google Scholar
  11. 11.
    Beziau, J.-Y., Jacquette, D. (eds): Around and beyond the square of opposition. Birkhäuser, Basel (2012)zbMATHGoogle Scholar
  12. 12.
    Beziau, J.-Y., Payette G. (eds): Special Issue on the Square of Opposition. Logica Univers. 2(1) (2008)Google Scholar
  13. 13.
    Beziau, J.-Y., Payette, G. (eds): The square of opposition—A general framework for cognition. Peter Lang, Bern (2012)Google Scholar
  14. 14.
    Beziau, J.-Y., Read, S. (eds) Special issue of History and Philosophy of Logic on the square of opposition. 4 (2014).Google Scholar
  15. 15.
    Beziau, J.-Y., Gan-Krzywoszynska, K. (eds): New dimension of the square of Opposition. Philosophia, Munich (2016)Google Scholar
  16. 16.
    Beziau, J.-Y., Basti, G. (eds): The square of opposition, a cornerstone for thought. Birkhäuser, Basel (2016)Google Scholar
  17. 17.
    Bjørdal, F.: Cubes and hypercubes of opposition, with ethical ruminations on inviolability. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0149-9
  18. 18.
    Blanché R.: Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Logic 22, 17–18 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Blanché R.: Structures intellectuelles. Essai sur lorganisation systématique des concepts. Vrin, Paris (1966)Google Scholar
  20. 20.
    Cartier P.: How to take advantage of the blur between the finite and the infinite. Logica Univers. 6, 217–226 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Choudhury L., Chakraborty, M.K.: Singular propositions, negation and the square of opposition. Logica Univers. 10, (2016). doi: 10.1007/s11787-016-0145-0
  22. 22.
    Dekker, P.J.E.: Herakleitean Oppositions. In: [15].Google Scholar
  23. 23.
    Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Logica Univers. 10 (2016). doi: 10.1007/s11787-015-0136-6
  24. 24.
    Giovagnoli, R.: Why the Fregean “square of opposition” matters for epistemology. In: [11], pp. 111–116.Google Scholar
  25. 25.
    Jacquette, D.: Subalternation and existence presuppositions in an unconventionally formalized canonical square of opposition. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0147-y
  26. 26.
    Jaspers D.: Logic and colour. Logica Univers. 6, 227–248 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lachance, G.: Platonic Contrariety (enantia): Ancestor of the Aristotelian notion of contradiction (antiphasis)? Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0141-4
  28. 28.
    Lemaire, J.: Is Aristotle the father of the square of opposition?. In [15].Google Scholar
  29. 29.
    Lenzen, W.: Leibniz’s logic and the “cube of opposition”. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0143-2
  30. 30.
    Lenzen, W.: Leibniz: Logic. Internet Encyclopedia of Philosophy.
  31. 31.
    Lepage, F.: A square of oppositions in intuitionistic logic with strong negation. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0144-1
  32. 32.
    Łukasiewicz J.: A system of modal logic. J. Comput. Syst. 1, 111–149 (1953)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Magnani L.: Understanding Violence. The Intertwining of Morality, Religion, and Violence: A Philosophical Stance. Springer, Heidelberg (2011)Google Scholar
  34. 34.
    Magnani, L.: Violence hexagon. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0140-5
  35. 35.
    Moktefi, A., Shin, S.-J. (eds): Visual reasoning with diagrams. Birkhäuser, Basel (2013)zbMATHGoogle Scholar
  36. 36.
    Moretti, A.: The geometry of logical opposition. PhD Thesis directed by J.-Y.Beziau, University of Neuchâtel, Neuchâtel (2009)Google Scholar
  37. 37.
    Murinová, P., Novák, V.: Syllogisms and 5-Square of opposition with intermediate quantifiers in fuzzy natural logic. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0146-z
  38. 38.
    Nicolas, F.: The hexagon of opposition in music. In: [15]Google Scholar
  39. 39.
    Pizzi, C.: Generalization and composition of modal squares of oppositions. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0142-3
  40. 40.
    Robert, S., Brisson, J.: The Klein group, squares of opposition and the explanation of fallacies in reasoning. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0150-3
  41. 41.
    Shin S.-J.: The logical status of diagrams. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  42. 42.
    Wybraniec-Skardowska, U.: Logical squares for classical logic sentences. Logica Univers. 10 (2016). doi: 10.1007/s11787-016-0148-x

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.UFRJ-University of BrazilRio de JaneiroBrazil
  2. 2.CNPq-Brazilian Research CouncilBrasíliaBrazil
  3. 3.Pontifical Lateran UniversityVaticanItaly

Personalised recommendations