Logica Universalis

, Volume 10, Issue 2–3, pp 191–213 | Cite as

Subalternation and existence presuppositions in an unconventionally formalized canonical square of opposition

Article

Abstract

An unconventional formalization of the canonical (Aristotelian-Boethian) square of opposition in the notation of classical symbolic logic secures all but one of the canonical square’s grid of logical interrelations between four A-E-I-O categorical sentence types. The canonical square is first formalized in the functional calculus in Frege’s Begriffsschrift, from which it can be directly transcribed into the syntax of contemporary symbolic logic. Difficulties in received formalizations of the canonical square motivate translating I categoricals, ‘Some S is P’, into symbolic logical notation, not conjunctively as \({\exists x[Sx\wedge Px]}\), but unconventionally instead in an ontically neutral conditional logical symbolization, as \({\exists x[Sx\rightarrow Px]}\). The virtues and drawbacks of the proposal are compared at length on twelve grounds with the explicit existence expansion of A and E categoricals as the default strategy for symbolizing the canonical square preserving all original logical interrelations.

Keywords

Categorical universal and existential generalizations (A-E-I-O sentence types) Contradiction Existence presupposition Frege Gottlob Logical contrariety Square of opposition Subalternation Subcontrariety Syllogistic logic 

Mathematics Subject Classification

03A05 03B05 03B10 03B20 03B65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beth E.W.: The foundations of mathematics. North-Holland Publishing Company, Amsterdam (1959)MATHGoogle Scholar
  2. 2.
    Beziau, J.-Y., Jacquette, D. (eds.): Around and beyond the square of opposition. Papers from the \({2^{{\rm nd}}}\) World Congress on the Square of Opposition, Corte, Corsica, France. Birkhäuser, (Springer), Basel (2012)Google Scholar
  3. 3.
    Church, A.: The history of the question of existential import of categorical propositions. In: Yehoshua B.-H. (ed.) Logic, methodology, and philosophy of science. (Proceedings of the 1964 International Congress), pp. 417–424. North-Holland, Amsterdam (1965)Google Scholar
  4. 4.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1964). Halle: Verlag von Louis Nebert (1879) [references to Frege, Begriffsschrift und andere Aufsätze, zweite Auflage mit E. Husserls und H. Scholz’ Anmerkungen herausgegeben von Ignacio Angelelli. Darmstadt: Wissenschaftliche Buchgesellschaft]Google Scholar
  5. 5.
    Hintikka, J.: Two papers on symbolic logic. Acta Philos. Fenn. 8(entire issue) (1955)Google Scholar
  6. 6.
    Jacquette, D.: Thinking outside the square of opposition box. In: Beziau, J.V., Jacquette, D. (eds), pp. 73–92 (2012)Google Scholar
  7. 7.
    Jacquette, D.: Frege, A Philosophical Biography. Cambridge University Press, Cambridge (forthcoming 2017)Google Scholar
  8. 8.
    Klima G.: John Buridan. Oxford University Press, Oxford (2009)Google Scholar
  9. 9.
    Parsons T.: The traditional square of opposition: a biography. Acta Anal. 18, 23–49 (1997)Google Scholar
  10. 10.
    Smiley T.: Mr. Strawson on the Traditional Logic. Mind 76, 118–120 (1967)CrossRefGoogle Scholar
  11. 11.
    Smullyan R.: First-order logic. Springer-Verlag, Inc., New York (1968)CrossRefMATHGoogle Scholar
  12. 12.
    Strawson, P.F.: Introduction to Logical Theory, pp. 167–170. Methuen & Co. Ltd, London (1952)Google Scholar
  13. 13.
    Wedin M.V.: Negation and Quantification in Aristotle. History Philos. Logic 11, 131–150 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.University of BernBernSwitzerland

Personalised recommendations