Logica Universalis

, Volume 10, Issue 2–3, pp 327–338 | Cite as

A Square of Oppositions in Intuitionistic Logic with Strong Negation

  • François LepageEmail author


In this paper, we introduce a Hilbert style axiomatic calculus for intutionistic logic with strong negation. This calculus is a preservative extension of intuitionistic logic, but it can express that some falsity are constructive. We show that the introduction of strong negation allows us to define a square of opposition based on quantification on possible worlds.


Intuitionistic logic strong negation Kripke models saturated sets 

Mathematics Subject Classification

Primary 03B20 Secondary 03B45 03B55 03B60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akama S.: Nelsons paraconsistent logics. Logic Log. Philos. 7, 101–115 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Nelson D.: Constructible falsit. J. Symb. Logic 14, 16–26 (1949)CrossRefGoogle Scholar
  3. 3.
    Rasiowa H.: N-lattices and constructive logic with strong negation. Fundam. Math. 46, 61–80 (1958)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Vakarelov D.: Intuitive semantics for some three-valued logics connected with information, contrariety and subcontrariety. Stud. Log. XLVIII, 4, 565–575 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Vorob’ev N.N.: Constructive propositional calculus with strong negation. (in Russian). Doklady Academii Nauk SSSR 85, 456–468 (1952)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Département de philosophieUniversité de MontréalMontréalCanada

Personalised recommendations