Logica Universalis

, Volume 10, Issue 2–3, pp 233–292

Metalogical Decorations of Logical Diagrams

Article

Abstract

In recent years, a number of authors have started studying Aristotelian diagrams containing metalogical notions, such as tautology, contradiction, satisfiability, contingency, strong and weak interpretations of (sub)contrariety, etc. The present paper is a contribution to this line of research, and its main aims are both to extend and to deepen our understanding of metalogical diagrams. As for extensions, we not only study several metalogical decorations of larger and less widely known Aristotelian diagrams, but also consider metalogical decorations of another type of logical diagrams, viz. duality diagrams. At a more fundamental level, we present a unifying perspective which sheds new light on the connections between new and existing metalogical diagrams, as well as between object- and metalogical diagrams. Overall, the paper studies two types of logical diagrams (viz. Aristotelian and duality diagrams) and four kinds of metalogical decorations (viz. those based on the opposition, implication, Aristotelian and duality relations).

Keywords

Aristotelian diagram duality diagram metalogic opposition geometry implication geometry contrariety 

Mathematics Subject Classification

Primary 03A10 03B45 Secondary 03B65 03B80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–232 (2003)MathSciNetMATHGoogle Scholar
  2. 2.
    Béziau, J.-Y.: Bivalent semantics for De Morgan logic (the uselessness of four-valuedness). In: Carnielli, W., Coniglio, M., D’Ottaviano, I. (eds.) The Many Sides of Logic, pp. 391–402. College Publications, London (2009)Google Scholar
  3. 3.
    Béziau, J.-Y.: Paralogics and the theory of valuation. In: Carnielli, W., Coniglio, M., D’Ottaviano, I. (eds.) Universal Logic: An Anthology—From Paul Hertz to Dov Gabbay, pp. 361–372. Springer, Basel (2012)Google Scholar
  4. 4.
    Béziau J.-Y.: The power of the hexagon. Log. Univers. 6, 1–43 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Béziau J.-Y.: The metalogical hexagon of opposition. Argumentos 5, 111–122 (2013)Google Scholar
  6. 6.
    Béziau, J.-Y.: Opposition and order. In: Béziau J.-Y., Gan-Krzywoszynska, K. (eds.) New Dimensions of the Square of Opposition, pp. 321–336. Philosophia Verlag, Munich (2014)Google Scholar
  7. 7.
    Béziau, J.-Y.: Paraconsistent logic and contradictory viewpoints. Rev. Bras. Filos. (forthcoming)Google Scholar
  8. 8.
    Béziau, J.-Y., Jacquette, D. (eds.): Around and Beyond the Square of Opposition. Springer, Basel (2012)Google Scholar
  9. 9.
    Béziau, J.-Y., Payette, G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012)Google Scholar
  10. 10.
    Blanché R.: Quantity, modality, and other kindred systems of categories. Mind 61, 369–375 (1952)CrossRefGoogle Scholar
  11. 11.
    Blanché R.: Sur l’Opposition des Concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  12. 12.
    Blanché R.: Opposition et Négation. Revue Philosophique de France et de l’Étranger 147, 187–216 (1957)Google Scholar
  13. 13.
    Blanché, R.: Structures Intellectuelles: Essai sur l’Organisation Systématique des Concepts. Vrin, Paris (1966)Google Scholar
  14. 14.
    Bochenski, J.: A Precis of Mathematical Logic. Reidel, Dordrecht (1959)Google Scholar
  15. 15.
    Copenhaver, B., Normore, C., Parsons, T.: Peter of Spain: Summaries of Logic. Text, Translation, Introduction, and Notes. Oxford University Press, Oxford (2014)Google Scholar
  16. 16.
    Chatti, S.: Logical Oppositions in Arabic logic: avicenna and averroes. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 21–40. Springer, Basel (2012)Google Scholar
  17. 17.
    Chatti S.: Avicenna on possibility and necessity. Hist. Philos. Log. 35, 332–353 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Chellas, B.: Modal Logic. An Introduction. Cambridge University Press, Cambridge (1980)Google Scholar
  19. 19.
    Cze zowski T.: On certain peculiarities of singular propositions. Mind 64, 392–395 (1955)CrossRefGoogle Scholar
  20. 20.
    D’Alfonso, D.: The square of opposition and generalized quantifiers. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 219–227. Springer, Basel (2012)Google Scholar
  21. 21.
    Demey, L.: Algebraic aspects of duality diagrams. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS 7352, pp. 300–302. Springer, Berlin (2012)Google Scholar
  22. 22.
    Demey, L.: Structures of oppositions in public announcement logic. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 313–339. Springer, Basel (2012)Google Scholar
  23. 23.
    Demey, L.: Interactively illustrating the context-sensitivity of Aristotelian diagrams. In: Christiansen, H., Stojanovic, I., Papadopoulos, G. (eds.) Modeling and Using Context, LNCS 9405, pp. 331–345. Springer, Berlin (2015)Google Scholar
  24. 24.
    Demey, L.: Using syllogistics to teach metalogic (submitted, 2015)Google Scholar
  25. 25.
    Demey, L.: Partitioning logical space. Manuscript (2015)Google Scholar
  26. 26.
    Demey, L.: Dependence and independence in logical geometry. Manuscript (2016)Google Scholar
  27. 27.
    Demey, L., Smessaert, H.: Logische geometrie en pragmatiek. In: Van de Velde, F., Smessaert, H., Van Eynde, F., Verbrugge, S. (eds.) Patroon en argument, pp. 553–564. Leuven University Press, Leuven (2014)Google Scholar
  28. 28.
    Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrammatic Representation and Inference, LNCS, vol. 8578, pp. 213–227. Springer, Berlin (2014)Google Scholar
  29. 29.
    Demey, L., Smessaert, H.: Duality in logic and language. In: Béziau, J.-Y. (ed.) Encyclopedia of Logic. College Publications, London (2015)Google Scholar
  30. 30.
    Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments (submitted, 2015)Google Scholar
  31. 31.
    Demey, L., Smessaert, H.: Generating the logical relations. Manuscript (2015)Google Scholar
  32. 32.
    Demey, L., Smessaert, H.: The logical geometry of the Aristotelian rhombic dodecahedron. Manuscript (2015)Google Scholar
  33. 33.
    Diaconescu, R.: The algebra of opposition (and universal logic interpretations). In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic, pp. 127–143. Springer, Basel (2015)Google Scholar
  34. 34.
    Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010)Google Scholar
  35. 35.
    Fitting, M., Mendelsohn, R.: First-Order Modal Logic. Kluwer, Dordrecht (1998)Google Scholar
  36. 36.
    Gottschalk W.H.: The theory of quaternality. J. Symb. Log. 18, 193–196 (1953)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Hacker E.: The octagon of opposition. Notre Dame J. Form. Log. 16, 352–353 (1975)CrossRefMATHGoogle Scholar
  38. 38.
    Horn, L.: A Natural History of Negation. University of Chicago Press, Chicago, IL (1989)Google Scholar
  39. 39.
    Horn, L.: Histoire d’*O: Lexical pragmatics and the geometry of opposition. In: Béziau, J.-Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 393–426. Peter Lang, Bern (2012)Google Scholar
  40. 40.
    Hughes, G.: The modal logic of John Buridan. In: Corsi, G., Mangione, C., Mugnai, M. (eds.) Atti del convegno internazionale di storia della logica, le teorie delle modalità, pp. 93–11. CLUEB, Bologna (1987)Google Scholar
  41. 41.
    Humberstone, L.: The Connectives. MIT Press, Cambridge, MA (2011)Google Scholar
  42. 42.
    Humberstone L.: Logical relations. Philos. Perspect. 27, 175–230 (2013)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Jacoby P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast. 24, 32–56 (2012)CrossRefGoogle Scholar
  44. 44.
    Jaspers D.: Logic and colour. Log. Univers. 6, 227–248 (2012)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Johnson, W.E.: Logic: Part I. Cambridge University Press, London (1921)Google Scholar
  46. 46.
    Katzir R., Singh R.: Constraints on the lexicalization of logical operators. Linguist. Philos. 36, 1–29 (2013)CrossRefGoogle Scholar
  47. 47.
    Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884)Google Scholar
  48. 48.
    Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 43–60. Springer, Basel (2012)Google Scholar
  49. 49.
    Kretzmann, N.: William of Sherwood’s Introduction to Logic. University of Minnesota Press, Minneapolis (1966)Google Scholar
  50. 50.
    Lenzen, W.: How to square knowledge and belief. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 305–311. Springer, Basel (2012)Google Scholar
  51. 51.
    Libert, T.: Hypercubes of duality. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 293–301. Springer, Basel (2012)Google Scholar
  52. 52.
    Löbner, S.: Quantification as a major module of natural language semantics. In: Groenendijk, J., de Jongh, D., Stokhof, M. (eds.) Studies in Discourse Representation Theory and the Theory of Generalized Quantifiers, pp. 53–85. Foris, Dordrecht (1987)Google Scholar
  53. 53.
    Löbner, S.: Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Max Niemeyer Verlag, Tübingen (1990)Google Scholar
  54. 54.
    Löbner, S.: Dual oppositions in lexical meaning. In: Maienborn, C., von Heusinger, K., Portner, P. (eds.) Semantics: An International Handbook of Natural Language Meaning, vol. I, pp. 479–506. De Gruyter Mouton, Berlin (2011)Google Scholar
  55. 55.
    Luzeaux D., Sallantin J., Dartnell C.: Logical Extensions of Aristotle’s Square. Log. Univers. 2, 167–187 (2008)MathSciNetCrossRefMATHGoogle Scholar
  56. 56.
    McNamara, J.: In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (Winter 2014 Edition). CSLI, Stanford (2014)Google Scholar
  57. 57.
    McCall S.: Contrariety. Notre Dame J. Form. Log. 8, 121–132 (1967)CrossRefMATHGoogle Scholar
  58. 58.
    Mélès, B.: No group of opposition for constructive logics: the intuitionistic and linear cases. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 201–217. Springer, Basel (2012)Google Scholar
  59. 59.
    Moretti, A.: The Geometry of Logical Opposition. PhD thesis, University of Neuchâtel (2009)Google Scholar
  60. 60.
    Moretti A.: Why the logical hexagon? Log. Univers. 6, 69–107 (2012)MathSciNetMATHGoogle Scholar
  61. 61.
    Moretti, A.: Arrow-Hexagons. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic, vol. II, pp. 417–487. Springer, Basel (2015)Google Scholar
  62. 62.
    Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy (Winter 2014 Edition). CSLI, Stanford (2012)Google Scholar
  63. 63.
    Peckhaus, V.: Algebra of logic, quantification theory, and the square of opposition. In: Béziau J.-Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 25–41. Peter Lang, Bern (2012)Google Scholar
  64. 64.
    Pellissier R.: “Setting” n-opposition. Log. Univers. 2, 235–263 (2008)MathSciNetCrossRefMATHGoogle Scholar
  65. 65.
    Peters, S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)Google Scholar
  66. 66.
    Piaget, J.: Traité de Logique. Essai de Logistique Opératoire. Colin/Dunod, Paris (1949)Google Scholar
  67. 67.
    Read, S.: John Buridan’s theory of consequence and his octagons of opposition. In: Béziau J.-Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 93–110. Springer, Basel (2012)Google Scholar
  68. 68.
    Rini, A., Cresswell, M.: The World-Time Parallel. Tense and Modality in Logic and Metaphyiscs. Cambridge University Press, Cambridge (2012)Google Scholar
  69. 69.
    Sauriol P.: Remarques sur la théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)CrossRefGoogle Scholar
  70. 70.
    Sesmat, A.: Logique II. Les Raisonnements. Hermann, Paris (1951)Google Scholar
  71. 71.
    Seuren, P.: The Logic of Language. Language from Within, Volume II. Oxford University Press, Oxford (2010)Google Scholar
  72. 72.
    Seuren, P.: The metalogical hexagon. Manuscript (2014)Google Scholar
  73. 73.
    Seuren P., Jaspers D.: Logico-cognitive structure in the lexicon. Language 90, 607–643 (2014)CrossRefGoogle Scholar
  74. 74.
    Smessaert H.: On the 3D visualisation of logical relations. Log. Univers. 3, 303–332 (2009)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Smessaert, H.: Boolean differences between two hexagonal extensions of the logical square of oppositions. In: Cox, P., Plimmer, B., Rodgers, P. (eds.) Diagrammatic Representation and Inference, LNCS vol. 7352, pp. 193–199. Springer, Berlin (2012)Google Scholar
  76. 76.
    Smessaert, H.: Duality and reversibility: squares versus crosses; Part 1: the logical geometry of set inclusion. Paper read at the Workshop on Logical Geometry and N-Opposition Theory, Leuven (2012)Google Scholar
  77. 77.
    Smessaert H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Univers. 6, 171–199 (2012)MathSciNetCrossRefMATHGoogle Scholar
  78. 78.
    Smessaert, H., Demey, L.: Logical and geometrical complementarities between Aristotelian diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrammatic Representation and Inference, LNCS, vol. 8578, pp. 246–260. Springer, Berlin (2014)Google Scholar
  79. 79.
    Smessaert H., Demey L.: Logical geometries and information in the square of oppositions. J. Log. Lang. Inf. 23, 527–565 (2014)MathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Smessaert, H., Demey, L.: Béziau’s contributions to the logical geometry of modalities and quantifiers. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic, vol. I, pp. 475–494. Springer, Basel (2015)Google Scholar
  81. 81.
    Smessaert, H., Demey, L.: La géométrie logique du dodécaèdre rhombique des oppositions. In: Chatti, S. (ed.) Le Carré et ses Extensions: Approches Théoriques, Pratiques et Historiques, pp. 127–157. Université de Tunis, Tunis (2015)Google Scholar
  82. 82.
    Smessaert, H., Demey, L.: The unreasonable effectiveness of bitstrings in logical geometry (submitted, 2015)Google Scholar
  83. 83.
    van Benthem, J.: Linguistic universals in logical semantics. In: Zaefferer, D. (ed.) Semantic Universals and Universal Semantics, pp. 17–36. Foris, Berlin (1991)Google Scholar
  84. 84.
    Westerståhl, D.: Classical vs. modern squares of opposition, and beyond. In: Béziau, J.-Y., Payette, G. (eds.) The Square of Opposition. A General Framework for Cognition, pp. 195–229. Peter Lang, Bern (2012)Google Scholar
  85. 85.
    Zellweger, S.: Untapped potential in Peirce’s iconic notation for the sixteen binary connectives. In: Houser, N., Roberts, D.D., Van Evra, J. (eds.) Studies in the Logic of Charles Peirce, pp. 334–386. Indiana University Press, Bloomington (1997)Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Center for Logic and Analytic Philosophy, KU LeuvenLeuvenBelgium
  2. 2.Department of Linguistics, KU LeuvenLeuvenBelgium

Personalised recommendations