Advertisement

Logica Universalis

, Volume 9, Issue 4, pp 501–522 | Cite as

A Strong and Rich 4-Valued Modal Logic Without Łukasiewicz-Type Paradoxes

  • José M. Méndez
  • Gemma Robles
Article

Abstract

The aim of this paper is to introduce an alternative to Łukasiewicz’s 4-valued modal logic Ł. As it is known, Ł is afflicted by “Łukasiewicz (modal) type paradoxes”. The logic we define, PŁ4, is a strong paraconsistent and paracomplete 4-valued modal logic free from this type of paradoxes. PŁ4 is determined by the degree of truth-preserving consequence relation defined on the ordered set of values of a modification of the matrix MŁ characteristic for the logic Ł. On the other hand, PŁ4 is a rich logic in which a number of connectives can be defined. It also has a simple bivalent semantics of the Belnap–Dunn type.

Keywords

Many-valued logics modal logics paraconsistent logics paracomplete logics 4-valued modal logics Łukasiewicz 4-valued modal logic Belnap–Dunn type semantics 

Mathematics Subject Classification

Primary 03B47 Secondary 03B45 03B50 03B53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann W.: Begründung einer strengen implikation. J. Symb. Log. 21(2), 113–128 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Anderson, A.R., Belnap, N.D. Jr.: Entailment. The logic of relevance and necessity, vol. I. Princeton University Press, Princeton (1975)Google Scholar
  3. 3.
    Batens D., De Clercq K., Kurtonina N.: Embedding and interpolation for some paralogics. The propositional case. Rep. Math. Log. 33, 29–44 (1999)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy. Oriel Press Ltd, Stocksfield (1977)Google Scholar
  5. 5.
    Belnap, N.D.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic. D. Reidel, Dordrecht (1977)Google Scholar
  6. 6.
    Béziau J.: A new four-valued approach to modal logic. Log. Anal. 54, 18–33 (2011)Google Scholar
  7. 7.
    Brady R.T.: Completeness proofs for the systems RM3 and BN4. Log. Anal. 25, 9–32 (1982)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Brady, R.T. (ed.): Relevant logics and their rivals, vol. II. Ashgate, Aldershot (2003)Google Scholar
  9. 9.
    Carnielli, W., Coniglio, M., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (Eds.) Handbook of Philosophical Logic, vol. 14, pp. 1–93. Springer, Berlin (2007)Google Scholar
  10. 10.
    Dunn, J.M.: The algebra of intensional logics. Doctoral dissertation, University of Pittsburg, Ann Arbor, University Microfilms (1966)Google Scholar
  11. 11.
    Dunn J.M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29, 149–168 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dunn J.M.: Partiality and its dual. Stud. Log. 65, 5–40 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Font J.M., Hajek P.: On Łukasiewicz four-valued modal logic. Stud. Log. 70(2), 57–182 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    González, C.: MaTest. (2012). http://ceguel.es/mates. Accessed 01 July 2015
  15. 15.
    Kamide, N.: Proof systems combining classical and paraconsistent negations. Stud. Log. 91(2), 217–238 (2009)Google Scholar
  16. 16.
    Karpenko A.S.: Jaśkowski’s criterion and three-valued paraconsistent logics. Log. Log. Philos. 7, 81–86 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Łukasiewicz, J.: On three-valued logic. In: Łukasiewicz, J., Borkowski, L. (eds.) Selected Works, vol. 1970, pp. 87–88. North-Holland, Amsterdam (1920)Google Scholar
  18. 18.
    Łukasiewicz, J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press, Oxford (1951)Google Scholar
  19. 19.
    Łukasiewicz J.: A system of modal logic. J. Comput. Syst. 1, 111–149 (1953)Google Scholar
  20. 20.
    Łukasiewicz, J.: Selected Works. North-Holland, Amsterdam (1970)Google Scholar
  21. 21.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den aussagenkalkül. Compt. Rend. Séances Soc. Sci. Lett. Vars. III(23), 1–21 (1930). [English translation: Investigation into the sentential calculus. In: J. Łukasiewicz (ed. by L. Borkowski), Selected works, North-Holland Pub. Co., Amsterdam, 1970]Google Scholar
  22. 22.
    Mendelson, E.: Introduction to mathematical logic. In: The University Series in Undergraduate Mathematics. D. Van Nostrand Co., Princeton (1964)Google Scholar
  23. 23.
    Méndez, J.M., Robles, G., Salto, F.: An interpretation of Łukasiewicz’s 4-valued modal logic. J. Philos. Log. (2015). doi: 10.1007/s10992-015-9362-x
  24. 24.
    Minari, P.: A note on Łukasiewicz’s three-valued logic. Annali del Dipartimento di Filosofia VII, 163–189 (2002). doi: 10.13128/Annali_Dip_Filos-1969
  25. 25.
    Mruczek-Nasieniewska K., Nasieniewski M.: Syntactical and semantical characterization of a class of paraconsistent logics. Bull. Sect. Log. 34(4), 229–248 (2005)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Mruczek-Nasieniewska K., Nasieniewski M.: Paraconsistent logics obtained by J. -Y. Béziau’s method by means of some non-normal modal logics. Bull. Sect. Log. 37(3/4), 185–196 (2008)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 6, pp. 287–393. Springer, Berlin (2002)Google Scholar
  28. 28.
    Robles G., Méndez J.M.: The basic constructive logic for a weak sense of consistency. J. Log. Lang. Inf. 17/1, 89–107 (2008)Google Scholar
  29. 29.
    Robles, G., Méndez, J.M.: A binary Routley semantics for intuitionistic De Morgan minimal logic \({{\rm H}_{-}\{\rm M\}}\) and its extensions. Log. J. IGPL 23(2), 174–193 (2015). doi: 10.1093/jigpal/jzu029
  30. 30.
    Robles, G.: An affixing Routley–Meyer semantics for the 4-valued modal logic PŁ4 (Manuscript)Google Scholar
  31. 31.
    Routley R., Routley V.: Semantics of first-degree entailment. Noûs 1, 335–359 (1972)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Routley, R., Meyer, R.K., Plumwood, V., Brady R.T.: Relevant logics and their rivals, vol. 1. Ridgeview Publishing Co., Atascadero (1982)Google Scholar
  33. 33.
    Tomova N.: A lattice of implicative extensions of regular Kleene’s logics. Rep. Math. Log. 47, 173–182 (2012)zbMATHMathSciNetGoogle Scholar
  34. 34.
    Tkaczyk M.: On axiomatization of Łukasiewicz’s four-valued modal logic. Log. Log. Philos. 20(3), 215–232 (2011)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Tuziak R.: Paraconsistent extensions of positive logic. Bull. Sect. Log. 25(1), 15–20 (1996)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Tuziak R.: Finitely many-valued paraconsistent systems. Log. Log. Philos. 5, 121–127 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Van Fraasen B.: Facts and tautological entailments. J. Philos. 67, 477–487 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Universidad de SalamancaSalamancaSpain
  2. 2.Dpto. de Psicología, Sociología y FilosofíaUniversidad de LeónLeónSpain

Personalised recommendations