Logica Universalis

, Volume 8, Issue 3–4, pp 393–406 | Cite as

The Institution-Theoretic Scope of Logic Theorems

  • Răzvan Diaconescu
  • Till Mossakowski
  • Andrzej Tarlecki


In this essay we analyse and elucidate the method to establish and clarify the scope of logic theorems offered within the theory of institutions. The method presented pervades a lot of abstract model theoretic developments carried out within institution theory. The power of the proposed general method is illustrated with the examples of (Craig) interpolation and (Beth) definability, as they appear in the literature of institutional model theory. Both case studies illustrate a considerable extension of the original scopes of the two classical theorems. Our presentation is rather narrative with the relevant logic and institution theory concepts introduced and explained gradually to the non-expert reader.

Mathematics Subject Classification (2000)

Primary 03C95 Secondary 03C40 03B70 


Institution theory abstract model theory interpolation definability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Csakany, B., Fried, E., Schmidt, E.T. (eds.) Colloquia Mathematics Societas János Bolyai, Universal Algebra, vol. 29, pp. 13–35. North-Holland (1981)Google Scholar
  2. 2.
    Bergstra J., Heering J., Klint P.: Module algebra. J. Assoc. Comput. Mach. 37(2), 335–372 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Beth E.W.: On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339 (1953)MathSciNetGoogle Scholar
  4. 4.
    Béziau J.-Y.: 13 questions about universal logic. Bull. Sect. Log. 35(2/3), 133–150 (2006)zbMATHGoogle Scholar
  5. 5.
    Béziau, J.-Y.: Editor Universal Logic: an Anthology. Studies in Universal Logic, Springer Basel (2012)Google Scholar
  6. 6.
    Birkhoff G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 31, 433–454 (1935)CrossRefGoogle Scholar
  7. 7.
    Borzyszkowski, T.: Generalized interpolation in first-order logic. Fundam. Inform. 66(3), 199–219 (2005)Google Scholar
  8. 8.
    Chang, C.-C., Jerome Keisler H.: Model Theory. North Holland, Amsterdam (1990)Google Scholar
  9. 9.
    Craig W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. J. Symb. Log. 22, 269–285 (1957)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Diaconescu, R.: Grothendieck institutions. Appl. Categorical Struct. 10(4), 383–402 (2002) Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638, February (2000)Google Scholar
  11. 11.
    Diaconescu R.: Institution-independent ultraproducts. Fundam. Inform. 55(3–4), 321–348 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Diaconescu R.: An institution-independent proof of Craig interpolation theorem. Studia Log. 77(1), 59–79 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Diaconescu R.: Interpolation in Grothendieck institutions. Theor. Comput. Sci. 311, 439–461 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Diaconescu, R.: Institution-independent Model Theory. Birkhäuser (2008)Google Scholar
  15. 15.
    Diaconescu R.: Borrowing interpolation. J. Log. Comput. 22(3), 561–586 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Diaconescu, R.: Three decades of institution theory. In: Béziau, J.-Y. (ed.) Universal Logic: an Anthology, pp. 309–322. Springer Basel (2012)Google Scholar
  17. 17.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularisation. In: Huet, G., Plotkin, G. (eds.) Proceedings of a Workshop held in Edinburgh, Logical Environments, pp. 83–130. Cambridge, 1993, Scotland, May (1991)Google Scholar
  18. 18.
    Dimitrakos T., Maibaum T.: On a generalized modularization theorem. Inform. Process. Lett. 74, 65–71 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Gabbay, D.M., Maksimova, L.: Interpolation and Definability: Modal and Intuitionistic Logics. Oxford University Press (2005)Google Scholar
  20. 20.
    Goguen J., Burstall R.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Găină D., Popescu A.: An institution-independent proof of Robinson consistency theorem. Studia Log. 85(1), 41–73 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Hodges, W.: Model Theory. Cambridge University Press (1993)Google Scholar
  23. 23.
    Makkai, M.: Ultraproducts and categorical logic. In: DiPrisco, C.A. (ed.) Methods in Mathematical Logic. Lecture Notes in Mathematics vol. 1130, pp. 222–309. Springer (1985)Google Scholar
  24. 24.
    Malcev, A.: The Metamathematics of Algebraic Systems. North-Holland (1971)Google Scholar
  25. 25.
    Matthiessen G.: Regular and strongly finitary structures over strongly algebroidal categories. Can. J. Math. 30, 250–261 (1978)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Marius P., Diaconescu R.: Abstract Beth definability in institutions. J. Symb. Log. 71(3), 1002–1028 (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Rodenburg, P.-H.: Interpolation in conditional equational logic. In: Preprint from Programming Research Group at the University of Amsterdam (1989)Google Scholar
  28. 28.
    Rodenburg P.-H.: A simple algebraic proof of the equational interpolation theorem. Algebra Univers. 28, 48–51 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Software Development. Springer (2012)Google Scholar
  30. 30.
    Shoenfield, J.: Mathematical Logic. Addison-Wesley (1967)Google Scholar
  31. 31.
    Tarlecki, A.: Bits and pieces of the theory of institutions. In: David P., Samson A., Axel P., David R. (eds.) Proceedings, Summer Workshop on Category Theory and Computer Programming. Lecture Notes in Computer Science, vol. 240, pp. 334–360. Springer (1986)Google Scholar
  32. 32.
    Tarlecki A.: Some nuances of many-sorted universal algebra: a review. Bull. EATCS 104, 89–111 (2011)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Veloso P.: On pushout consistency, modularity and interpolation for logical specifications. Inform. Process. Lett. 60(2), 59–66 (1996)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Răzvan Diaconescu
    • 1
  • Till Mossakowski
    • 2
  • Andrzej Tarlecki
    • 3
  1. 1.Simion Stoilow Institute of Mathematics of the Romanian AcademyBucharestRomania
  2. 2.DFKI GmbHBremenGermany
  3. 3.Institute of Informatics, University of WarsawWarsawPoland

Personalised recommendations