Advertisement

Logica Universalis

, Volume 7, Issue 4, pp 507–532 | Cite as

A Routley–Meyer Semantics for Gödel 3-Valued Logic and Its Paraconsistent Counterpart

  • Gemma Robles
Article

Abstract

Routley–Meyer semantics (RM-semantics) is defined for Gödel 3-valued logic G3 and some logics related to it among which a paraconsistent one differing only from G3 in the interpretation of negation is to be remarked. The logics are defined in the Hilbert-style way and also by means of proof-theoretical and semantical consequence relations. The RM-semantics is defined upon the models for Routley and Meyer’s basic positive logic B+, the weakest positive RM-semantics. In this way, it is to be expected that the models defined can be adapted to other related many-valued logics.

Mathematics Subject Classification (2010)

Primary 03B47 Secondary 03B55 03B50 03B53 

Keywords

Many-valued logics Gödel 3-valued logic Routley–Meyer semantics Paraconsistent logics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A.R., Belnap, N.D., Jr.: Entailment. The Logic of Relevance and Necessity, vol. I. Princeton University Press, Princeton (1975)Google Scholar
  2. 2.
    Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Ann. Pure Appl. Logic 147, 23–47 (2007)Google Scholar
  3. 3.
    Brady, R. (ed.): Relevant Logics and their Rivals, vol. II. Ashgate, Aldershot (2003)Google Scholar
  4. 4.
    Carnielli, W., Coniglio, M., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, vol. 14. Kluwer Academic Publishers, Dordrecht, pp. 1–93 (2007)Google Scholar
  5. 5.
    Dummett M.: A propositional calculus with a denumerable matrix. J. Symbol. Logic 24, 97–106 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gödel, K.: Zum intuitionistischen Aussagenkalkül, Anzeiger Akademie der wissenschaffen Wien. Math.-Naturwissensch Klasse 69, 65–69 (1933)Google Scholar
  7. 7.
    González, C.: MaTest. http://ceguel.es/matest. (Accesseed 10 Dec 2012) (2012)
  8. 8.
    Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn, vol. 6. Kluwer Academic Publishers, Dordrecht, pp. 287–393 (2002)Google Scholar
  9. 9.
    Robles, G., Méndez, J.M.: The basic constructive logic for a weak sense of consistency. J. Logic Lang. Inf. 17/1, 89–107 (2008)Google Scholar
  10. 10.
    Robles, G., Méndez, J.M.: Two-valued under-determined semantics for Gödel 3-valued logic G3 and its paraconsistent counterpart (submitted)Google Scholar
  11. 11.
    Routley, R., Meyer, R.K., Plumwood, V., Brady, R.T. Relevant Logics and their Rivals, vol. 1. Ridgeview Publishing Co., Atascadero (1982)Google Scholar
  12. 12.
    Sylvan, R., Plumwood, V.: Non-normal relevant logics. In: Brady, R. (ed.) Relevant Logics and Their Rivals, vol. 2. Ashgate, Aldershot pp. 10–16 (2003)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Dpto. de Psicología, Sociología y FilosofíaUniversidad de LeónLeónSpain

Personalised recommendations