Logica Universalis

, Volume 7, Issue 3, pp 265–273

Elements of Categorical Logic: Fifty Years Later



  1. 1.
    1. Bell, J.: The development of categorical logic. In: Gabbay, D. (ed.) The Handbook of Philosophical Logic, vol. 12, p. 279 (2005)Google Scholar
  2. 2.
    Blass A.R., Scedrov A.: Freyd’s models for the independence of the axiom of choice. Memoirs Am. Math. Soc. 79(404), 134 (1989)MathSciNetGoogle Scholar
  3. 3.
    3. De Groote, Ph. (ed.): The curry-howard isomorphism. In: Cahiers du Centre de Logique, Université catholique de Louvain, Louvain-La-Neuve, vol. 8, p. 364 (1995)Google Scholar
  4. 4.
    4. Corradini, A., et al.: Algebraic approaches to graph transformation. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation, pp. 163–312 (1997)Google Scholar
  5. 5.
    5. Voevodsky, et al. (2013) Homotopy Type Theory: Univalent Foundations of Mathematics. Princeton Institute for Advanced Study, PrincetonGoogle Scholar
  6. 6.
    6. Coecke, B. (ed.): New Structures for physics. In: Lecture Notes in Physics. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    7. Ehresmann, Ch.: Catégories et structures. Dunod, Paris (1965)Google Scholar
  8. 8.
    Freyd P.J.: The axiom of choice. J. Pure Appl. Algebra 19, 103–125 (1980)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Goguen J.A., Burstall R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    10. Jacobs, B.: Categorical Logic and Type Theory (Studies in Logic and the Foundations of Mathematics, vol. 141. Elsevier, North Holland (1999)Google Scholar
  11. 11.
    11. Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Ph.D. Columbia University, New York (1963)Google Scholar
  12. 12.
    Lawvere F.W.: An elementary theory of the category of sets. Proc. Nat. Acad. Sci. USA 52, 1506–1511 (1964)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    13. Lawvere, F.W.: Equality in hyperdoctrines and comprehension schema as an adjoint functor. Applications of Categorical Algebra (Proc. Sympos. Pure Math., vol. XVII, New York, 1968), pp. 1–14 (1970)Google Scholar
  14. 14.
    Landry E., Marquis J.-P.: Categories in context: historical, foundational, and philosophical. Philos. Math. 13(1), 1–43 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Makkai M.: Generalized sketches as a framework for completeness theorems (i). J. Pure Appl. Algebra 115, 49–79 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Makkai M.: Generalized sketches as a framework for completeness theorems (ii). J. Pure Appl. Algebra 115, 179–212 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Makkai M.: Generalized sketches as a framework for completeness theorems (iii). J. Pure Appl. Algebra 115, 241–274 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    18. Marquis, J.-P., Reyes, G.E.: The history of categorical logic: 1963–1977. In: Kanamori, A. (ed.) Handbook of the History of Logic: Sets and Extensions in the Twentieth Century, vol. 6, pp. 689–800 (2012)Google Scholar
  19. 19.
    19. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer, New York (1992)Google Scholar
  20. 20.
    Moggi , Moggi : Notions of computation and monads. Inf. Comput. 93, 55–92 (1989)CrossRefGoogle Scholar
  21. 21.
    21. Rodin, A.: Axiomatic Method and Category Theory, Synthese Library, vol. 364. Springer, Berlin (2013)Google Scholar
  22. 22.
    22. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry–Howard isomorphism, vol. 149. Elsevier, New York (2006)Google Scholar
  23. 23.
    23. Vickers, S.: Topology via Logic. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  1. 1.Nuance CommunicationsCaliforniaUSA
  2. 2.Institute of PhilosophySaint-Petersburg University, Russian Academy of SciencesMoscowRussia

Personalised recommendations