Logica Universalis

, Volume 6, Issue 3–4, pp 249–267 | Cite as

Guest Editor’s Introduction: JvH100

Article
  • 113 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles F.: Lewis Carroll’s method of trees: its origins in Studies in Logic. Mod. Logic 1, 25–34 (1990)MathSciNetMATHGoogle Scholar
  2. 2.
    Abeles, F.: Algorithms and mechanical processes in the work of Charles L. Dodgson. In: Lovett, C. (ed.) Proceedings of the Second International Lewis Carroll Conference. Lewis Carroll Society of North America, Winston-Salem, pp. 97–106 (1994)Google Scholar
  3. 3.
    Abeles F.: Herbrand’s fundamental theorem and the beginning of logic programming. Mod. Logic 4, 63–73 (1994)MathSciNetMATHGoogle Scholar
  4. 4.
    Abeles, F.F.: The first unification algorithm for automated deductive systems. In: Cameron, D.E., Wine, J.D. (eds.) Proceedings of the Midwest Mathematics History Conferences, Vol. 1: Proceedings of the Fourth Midwest Conference on The History of Mathematics, Miami University, Oxford, Ohio, 2–3 October 1992, pp. 125–127. Modern Logic Publishing, MLP Books, Ames (1997)Google Scholar
  5. 5.
    Abeles F.: Lewis Carroll’s formal logic. History and Philosophy of Logic 25, 33–46 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Abeles, F.: From the tree method in modern logic to the beginning of automated theorem proving. In: Shell-Gellasch, A., Jardine, D. (eds.) From Calculus to Computers: Using 200 years of Mathematics History in the Teaching of Mathematics, pp. 149–160. Mathematical Association of America, Washington, D.C. (2006)Google Scholar
  7. 7.
    Anellis I.H.: Review of [60]. Cognit. Brain Theory 4, 191–193 (1981)Google Scholar
  8. 8.
    Anellis, I.H.: Bertrand Russell’s earliest reactions to Cantorian set theory, 1896–1900. In: Baumgartner, J.E., Martin, D.A., Shelah, S. (eds.) Axiomatic Set Theory, Contemporary Mathematics, vol. 31, pp. 1–11. American Mathematical Society. Providence (1984)Google Scholar
  9. 9.
    Anellis, I.H.: Russell’s earliest interpretation of Cantorian set theory, 1896–1900. Philosophia Mathematica (2) 2, 1–31 (1987)Google Scholar
  10. 10.
    Anellis I.H.: Some unpublished papers of Jean van Heijenoort. Historia Mathematica 15, 270–274 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Anellis, I.H.: La obra de Jean van Heijenoort en el campo de la lógica: sus aporttaciones a la teoría de la demonstración. Mathesis 5, 353–370 (1989, English translation: [13])Google Scholar
  12. 12.
    Anellis I.H.: From semantic tableaux to Smullyan trees: a history of the development of the falsifiability tree method. Mod. Logic 1, 36–69 (1990)MathSciNetMATHGoogle Scholar
  13. 13.
    Anellis, I.H.: Jean van Heijenoort’s contributions to proof theory and its history. Mod. Logic 2, 312–335 (1992) [revised and expanded version: this issue (2012)]Google Scholar
  14. 14.
    Anellis, I.H.: Van Heijenoort: Logic and Its History in the Work and Writings of Jean van Heijenoort. Modern Logic Publishing, Ames (1994)Google Scholar
  15. 15.
    Anellis I.H.: Spitzfindigkeit—from Bocheński to Yanovskaya and van Heijenoort; abstract. Bull. Symbol. Logic 4, 438 (1998)Google Scholar
  16. 16.
    Anellis, I.H.: How Peircean was the “Fregean’ revolution” in logic? Logicheskie issledovaniya 18 (2012, in press) (expanded version available online at: http://www.cspeirce.com/menu/library/aboutcsp/anellis/csp-frege-revolu.pdf
  17. 17.
    Badesa Cortéz, C.: El teorema de Löwenheim en el marco de la teoría de relativos, Ph.D. thesis, University of Barcelona; published: Publicacións, Universitat de Barcelona, Barcelona (1991)Google Scholar
  18. 18.
    Badesa Cortéz, C.: (Maudsley, M., trans.), The Birth of Model Theory: Löwenheim’s Theorem in the Frame of the Theory of Relatives. Princeton University Press, Princeton/Oxford (2004)Google Scholar
  19. 19.
    Bernays, P.: Über die Zusammenhang des Herbrand’schen Satzes mit den neueren Ergebnissen von Schütte und Stenius. In: Gerretsen, J., de Groot, J. (eds.) Proceedings of the International Congress of Mathematicians, Amsterdam, September 2–September 9, 1954, vol. 2, p. 397. E.P. Noordhoff, Groningen (1954)Google Scholar
  20. 20.
    Beth E.W.: Hundred years of symbolic logic: a retrospective on the occasion of the Boole De Morgan centenary. Dialectica 1, 331–346 (1947)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bocheński, J.M.: Spitzfindigkeit. In: Festgabe an die Schweitzerkatholiken, pp. 334–352. Universitätsverlag, Freiberg (1954)Google Scholar
  22. 22.
    Brady G.: From Peirce to Skolem: A Neglected Chapter in the History of Logic. North-Holland/Elsevier Science, Amsterdam/New York (2000)MATHGoogle Scholar
  23. 23.
    Cellucci, C.: Mathematical logic: what has it done for philosophy of mathematics? In: Odifreddi, P. (ed.) Kreisleriana: About and Around Georg Kreisel, pp. 365–388. A K Peters, Wellesley (1996)Google Scholar
  24. 24.
    Dawson J.W.: Jean van Heijenoort: an all too brief acquaintance. Mod. Logic 2, 228–230 (1992)MATHGoogle Scholar
  25. 25.
    de Rouilhan, Ph.: De l’universalité de la logique. In: Bouveresse, J. (éd.), L’âge de la science. Lectures philosopiques, 4: Philosophie de la logique et philosophie du langage, pp. 93–113. Éditions Odile Jacob, Paris (1991)Google Scholar
  26. 26.
    Dodgson, C.L.: In: Bartley, W.W. (ed.) Lewis Carroll’s Symbolic Logic. Potter, New York (1977)Google Scholar
  27. 27.
    Dreben B.: Corrections to Herbrand. Not. Am. Math. Soc. 10, 285 (1963)Google Scholar
  28. 28.
    Dreben B., Andrews P., Aanderaa S.: Errors in Herbrand, Not. Am. Math. Soc. 10, 285 (1963)Google Scholar
  29. 29.
    Dreben B., Andrews P., Aanderaa S.: False lemmas in Herbrand. Bull. Am. Math. Soc. 69, 699–706 (1963)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Dreben B., Denton J.: A supplement to Herbrand. J. Symbol. Logic 31, 393–398 (1966)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Feferman, A.B.: Politics, Logic and Love: the Life of Jean van Heijenoort. Jones and Bartlett/A K Peters, Boston (1993) [reissued in paperback as: From Trotsky to Gödel: The Life of Jean van Heijenoort. A K Peters, Natick (2001)]Google Scholar
  32. 32.
    Feferman, A.B., Feferman, S.: Jean van Heijenoort (1912–1986). Mod. Logic 2, 231–238 (1992)Google Scholar
  33. 33.
    Feferman S.: The Gödel editorial project: a synopsis, Bull. Symbol. Logic 11, 132–149 (2005)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Fisch, M.H.: Peirce’s place in American life. In: Ketner, K.L., Kloesel, C.J.W. (eds.) Peirce, Semiotic, and Pragmatism: Essays by Max H. Fisch, pp. 401–421. Indiana University Press, Indianapolis (1986) [reprinted for the Charles S. Peirce Sesquicentennial International Congress, September 10, 1989, Harvard University, as “Walk a Cambridge mile in Peirce’s shoes” (1989)]Google Scholar
  35. 35.
    Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. L. Nebert, Halle. English translation by S. Bauer-Mengelberg. In: [70], pp. 1–82 (1967)Google Scholar
  36. 36.
    Frege G.: Die Grundlagen der Arithmetik. Eine logisch mathematisch Untersuchung über den Begriff der Zahl. Koebner, Breslau (1884)Google Scholar
  37. 37.
    Frege, G.: The Foundations of Arithmetic: A Logico-mathematical Enquiry into the Concept of Number. Northwestern University Press, Evanston, 2nd revised edn. Austin, J. L. (transl.) (1968)Google Scholar
  38. 38.
    Gentzen, G.: Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39, 176–210, 403–431 (1934)Google Scholar
  39. 39.
    Gillies, D.A.: The Fregean revolution in logic. In Gillies, D.A. (ed.) Revolutions in Mathematics, pp. 265–305. Clarendon Press, Oxford (1992; paperback ed., 1995)Google Scholar
  40. 40.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I, Monatshefte für Mathematik und Physik 38, 173–198 (1931) [Reprinted, with English translation: in [41, pp. 144–195] (1986); English translation by S. Bauer-Mengelberg in: [70, pp. 596–616] (1967)]Google Scholar
  41. 41.
    Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J. eds.), Collected Works, vol. I: Publications 1929–1974. Oxford University Press, New York (1986)Google Scholar
  42. 42.
    Gödel, K.: (Feferman, S., Dawson, J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J. eds.), Collected Works, vol. II: Publications 1938–1974. Oxford University Press, New York/Oxford (1990)Google Scholar
  43. 43.
    Goldfarb W.D.: Herbrand’s error and Gödel’s correction. Mod. Logic 3, 103–118 (1993)MathSciNetMATHGoogle Scholar
  44. 44.
    Green, J.: The problem of elimination in the algebra of logic. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic, pp. 1–9. Birkhäuser, Boston/Basel/Berlin (1991)Google Scholar
  45. 45.
    Hannequin A.E.: Essai critique sur l’hypothèse des atomes dans la science contemporaine. G. Masson, Paris (1895)Google Scholar
  46. 46.
    Herbrand, J.: Recherches sur la théorie de la démonstration. PhD. Thesis, Prace Towarzystwa Naukowego Warszawskiego, Wydział III, no. 33 (1930) [reprinted: [47, 35–153] (1968); English translations: [48, pp. 46–202] (1971); translation of Chapt. 5 in [70, pp. 529–581] (1967)]Google Scholar
  47. 47.
    Herbrand J.: (van Heijenoort, J., ed.), Écrits logiques. Presses Universitaires de France, Paris (1968)Google Scholar
  48. 48.
    Herbrand J.: (Goldfarb, W.D., trans. & ed.), Logical Writings. Harvard University Press, Cambridge (1971)CrossRefGoogle Scholar
  49. 49.
    Hintikka, J.: On the development of the model-theoretic viewpoint in logical theory, Synthèse 77, 1–36 (1988) [reprinted in: Hintikka, J.: Lingua Universalis vs. Calculus Ratiocinator: An Ultimate Presupposition of Twentieth-Century Philosophy. Kluwer, Dordrecht/Boston/London, pp. 104–139 (1997)]Google Scholar
  50. 50.
    Hook S.: Out of Step: An Unquiet Life in the 20th Century. Harper & Row, New York (1987)Google Scholar
  51. 51.
    Jeffrey R.C.: Formal Logic: Its Scope and Limits. McGraw-Hill, New York (1967)Google Scholar
  52. 52.
    Kerry B.: G. Cantors Mannigfaltigkeitsuntersuchungen, Vierteljahrsschrift für wissenschaftliche Philosophie 9, 191–232 (1885)Google Scholar
  53. 53.
    Kerry B.: Ueber Anschauung und ihre psychische Verarbeitung. I, Vierteljahrsschrift für wissenschaftliche Philosophie 9, 433–493 (1885)Google Scholar
  54. 54.
    Ladd-Franklin, C.: On the algebra of logic. In: [58], pp. 17–71 (1883)Google Scholar
  55. 55.
    Maslov, S.Yu.: Obratnyi metod ustanovleniya vyvodimosti dlya logicheskikh ischislenii, Trudy matematicheskogo instituta im. V. A. Steklova 98, 56–87 (1968) [English translation by A. Yablonsky: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P. (ed.) The Calculi of Symbolic Logic, I. Proceedings of the Steklov Institute of Mathematics no. 98 (Providence: American Mathematical Society), 25–95 (1968)]Google Scholar
  56. 56.
    Maslov, S.Yu.: Svyaz mezdu taktiki obratnogo metoda i metoda rezolyutsii, Doklady Akademii Nauk SSSR, ZNS LOMI 16, 137–146 (1969) [English translation: Proof-search strategies for methods of resolution type, Machine Intelligence 6, 77– 90 (1971)]Google Scholar
  57. 57.
    Moore G.H.: Review of [70, 2nd, corrected, printing]. Historia Mathematica 4, 468–471 (1977)CrossRefGoogle Scholar
  58. 58.
    Peirce, C.S. (ed.): Studies in Logic by Members of the Johns Hopkins University. Little, Brown, & Co., Boston (1883)Google Scholar
  59. 59.
    Robinson J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12, 23–41 (1965)MATHCrossRefGoogle Scholar
  60. 60.
    Robinson J.A.: Logic: Form and Function, the Mechanization of Deductive Reasoning. Elsevier North-Holland, New York (1979)MATHGoogle Scholar
  61. 61.
    Russell, B.: Review of [45], Mind (n.s.) 5, 410–417 (1896) [reprinted: Griffin, N., Lewis, A.C., eds., Philosophical Papers, 1896-99; Volume 2 of The Collected Papers of Bertrand Russell. Unwin Hyman, London/Boston/Sydney/Wellington, pp. 36–43 (1990)]Google Scholar
  62. 62.
    Russell B.: Introduction to Mathematical Philosophy. George Allen & Unwin, London (1919)MATHGoogle Scholar
  63. 63.
    Smullyan R.M.: First-order Logic. Springer, Berlin/Heidelberg/New York (1968)MATHCrossRefGoogle Scholar
  64. 64.
    Tarski, A.: (Woodger, J.H., trans.), Logic, Semantics, Metamathematics: Papers from 1923 to 1938. Clarendon Press, Oxford (1956)Google Scholar
  65. 65.
    Van Heijenoort, J.: On the Correspondence between E. Cartan’s Method and the Vector Method in Differential Geometry; MS thesis, New York University (1946)Google Scholar
  66. 66.
    Van Heijenoort, J.: Friedrich Engels and mathematics (1948). In: [81], pp. 123–151 (1985) [Russian translation, with introduction, by V. A. Bazhanov, Priroda 8, 90–105 (1991)]Google Scholar
  67. 67.
    Van Heijenoort, J.: On Locally Convex Surfaces; Ph.D. thesis, New York University (1949)Google Scholar
  68. 68.
    Van Heijenoort J.: On locally convex manifolds. Communications of Pure and Applied Mathematics 5, 223–242 (1952)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Van Heijenoort J.: Review of [21]. J. Symbol. Logic 22, 382 (1957)Google Scholar
  70. 70.
    Van Heijenoort, J. (ed.): From Frege to Gödel: A Source Book of Mathematical Logic, 1879–1931. Harvard University Press, Cambridge (1967)Google Scholar
  71. 71.
    Van Heijenoort, J.: Logic as calculus and logic as language, Synthèse 17, 324–330 (1967) [reprinted: Cohen, R.S., Wartofsky, M.W. (eds.) Boston Studies in the Philosophy of Science 3. Reidel, Dordrecht, pp. 440–446 (1967); reprinted: [81, pp. 11–16]; Sluga, H. (ed.) General Assessments and Historical Accounts of Frege’s Philosophy, vol. 1: The Philosophy of Frege, Garland Publishing Co., New York, pp. 72–79 (1993)]Google Scholar
  72. 72.
    Van Heijenoort, J.: Subject and predicate in Western logic. Philosophy East and West 24, 253–268 (1974) [reprinted: [81], pp. 17–34 (1985)]Google Scholar
  73. 73.
    Van Heijenoort, J.: Herbrand; 15pp. ts.; 18 May 1975. Van Heijenoort Archives, Box 3.8/86-33/1 (1975)Google Scholar
  74. 74.
    Van Heijenoort, J.: El desarrollo de la teoría de la cuantificación. Universidad Nacional Autónoma de México, Instituto de Investigaciones filosóficas (1976)Google Scholar
  75. 75.
    Van Heijenoort, J.: Set-theoretic semantics. In: Gandy, R.O., Holland, J.M.E. (eds.) Logic Colloquium ’76, (Oxford, 1976), pp. 183–190. North-Holland, Amsterdam (1977) [reprinted in: [81], pp. 43–53 (1985)Google Scholar
  76. 76.
    Van Heijenoort, J.: Sense in Frege, Journal of Philosophical Logic 6, 93–102 (1977) [reprinted in: [81, pp. 55–63] (1985)]Google Scholar
  77. 77.
    Van Heijenoort, J.: Frege on sense identity. J. Philos. Logic 6, 103–108 (1977) [reprinted in: [81], pp. 65–69 (1985)]Google Scholar
  78. 78.
    Van Heijenoort, J.: With Trotsky in Exile: From Prinkipo to Coyoacán. Harvard University Press, Cambridge (1978) [De Prinkipo à à Coyoacán: sept ans auprès de Lèon Trotsky. M. Nadeau, Paris (1978)]Google Scholar
  79. 79.
    Van Heijenoort, J.: L’œuvre logique de Jacques Herbrand et son contexte historique. In: Stern, J. (ed.) Proceedings of the Herbrand Symposium, Logic Colloquium ’81, Marseilles, France, July 1981, pp. 57–85. North-Holland, Amsterdam (1982) [revised English translation as: Jacques Herbrand’s work in logic and its historical context, in: [81], pp. 99–121 (1985)]Google Scholar
  80. 80.
    Van Heijenoort, J.: Hacia una explicación de las entitades lógicas. Universidad Nacional Autónoma de México, Mexico City (1984)Google Scholar
  81. 81.
    Van Heijenoort, J.: Selected Essays. Bibliopolis Edizioni di Filosofia e Scienze. Naples (1985) [also published by Librairie Vrin, Paris (1985)]Google Scholar
  82. 82.
    Van Heijenoort, J.: Ostension and vagueness (1977). Published in [81], pp. 71–73 (1985)Google Scholar
  83. 83.
    Van Heijenoort, J.: Absolutism and relativism in logic (1979). Published in: [81], pp. 75–83 (1985)Google Scholar
  84. 84.
    Van Heijenoort, J.: Frege and vagueness. In: Haaparanta, L., Hintikka, J. (eds.) Frege Synthesized: Studies of the Philosophical and Foundational Work of Gottlob Frege, pp. 31–45. D. Reidel, Dordrecht (1985) [reprinted in: Sluga, H. (ed.) General Assessments and Historical Accounts of Frege’s Philosophy, vol. 3: Meaning and Ontology in Frege’s Philosophy. Garland Publishing, New York/Francis & Taylor, London, pp. 279–294 (1993); and [81], pp. 85–97 (1985)]Google Scholar
  85. 85.
    Van Heijenoort, J.: Jacques Herbrand’s work in logic and its historical context. In: [81], pp. 99–121 (1985)Google Scholar
  86. 86.
    Van Heijenoort, J.: Système et métasystème chez Russell. In: Paris Logic Group (eds.) Logic Colloquium ’85 (Orsay 1985), pp. 111–122. North-Holland, Amsterdam (1987)Google Scholar
  87. 87.
    Van Heijenoort, J.: Historical Development of modern logic (1974). Mod. Logic 2 (1992), 242–255 [reprinted, with revisions and a new introduction (this issue)]Google Scholar
  88. 88.
    Van Heijenoort, J.: Logic, nature of; undated mss. Van Heijenoort Archives, Box 3.8/86-33/3 (n.d.)Google Scholar
  89. 89.
    Whitehead, A. N., Russell, B. Principia Mathematica, 3 vols. Cambridge University Press, Cambridge (1910–1913)Google Scholar
  90. 90.
    Wirth, C.-P., Siekmann, J., Benzmüller, C., Autexier, S.: Jacques Herbrand: life, logic, and automated deduction. In: Gabbay, D.M., Woods, J. (eds.) Handbook of the History of Logic, vol. 5: Logic from Russell to Church. North-Holland, Amsterdam, pp. 195–254 (2009)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Peirce Edition ProjectInstitute for American Thought Indiana University-Purdue University at IndianapolisIndianapolisUSA

Personalised recommendations