Logica Universalis

, Volume 6, Issue 1–2, pp 69–107 | Cite as

Why the Logical Hexagon?

Article

Abstract

The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, neither among logicians, nor among philosophers of logic, whereas the latter played a very important theoretical role (both for logic and philosophy) for nearly two thousand years, before falling in disgrace in the first half of the twentieth century: it was, so to say, “sentenced to death” by the so-called analytical philosophers and logicians. Contrary to this, since 2004 a new, unexpected promising branch of mathematics (dealing with “oppositions”) has appeared, “oppositional geometry” (also called “n-opposition theory”, “NOT”), inside which the logical hexagon (as well as its predecessor, the logical square) is only one term of an infinite series of “logical bi-simplexes of dimension m”, itself just one term of the more general infinite series (of series) of the “logical poly-simplexes of dimension m”. In this paper we recall the main historical and the main theoretical elements of these neglected recent discoveries. After proposing some new results, among which the notion of “hybrid logical hexagon”, we show which strong reasons, inside oppositional geometry, make understand that the logical hexagon is in fact a very important and profound mathematical structure, destined to many future fruitful developments and probably bearer of a major epistemological paradigm change.

Mathematics Subject Classification (2010)

Primary 51L99 00A30 Secondary 03B05 03B10 03B45 03B53 03E75 03G10 05C99 

Keywords

Logical square logical hexagon simplex tetrahexahedron opposition negation contradiction paraconsistent logic geometry structure symmetry duality universal logic analytical philosophy structuralism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aristotle: Categories and De Interpretatione. (Translated with notes by J.L. Ackrill). Clarendon Aristotle Series, Oxford (1963)Google Scholar
  2. 2.
    Badir, S.: How the semiotic square came. In: [8]Google Scholar
  3. 3.
    Béziau J.-Y.: From paraconsistent to universal logic. Sorites 12, 5–32 (2001)Google Scholar
  4. 4.
    Béziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–233 (2003)Google Scholar
  5. 5.
    Béziau J.-Y.: Paraconsistent Logics! (a reply to Slater). Sorites 17, 17–25 (2006)Google Scholar
  6. 6.
    Béziau J.-Y.: The power of the Hexagon. Log. Universalis 6, 1–2 (2012)Google Scholar
  7. 7.
    Béziau, J.-Y., Jacquette, D. (eds): Around and Beyond the Square of Opposition. Birkhäuser, Basel (2012)Google Scholar
  8. 8.
    Béziau, J.-Y., Payette, G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012)Google Scholar
  9. 9.
    Bianchi I., Savardi U.: The Perception of Contraries. Aracne, Roma (2008)Google Scholar
  10. 10.
    Bianchi, I., Savardi, U.: The cognitive dimensions of contrariety. In: [8]Google Scholar
  11. 11.
    Blanché R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  12. 12.
    Blanché R.: Opposition et négation. Rev. Philos. 167, 187–216 (1957)Google Scholar
  13. 13.
    Blanché R.: Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log. 22(1), 17–18 (1957)MATHCrossRefGoogle Scholar
  14. 14.
    Blanché R.: Structures intellectuelles. Essai sur l’organisation systématique des concepts. Vrin, Paris (1966)Google Scholar
  15. 15.
    Blanché R.: Raison et discours. Défense de la logique réflexive. Vrin, Paris (1967)Google Scholar
  16. 16.
    Blanché R.: Sur le système des connecteurs interpropositionnels. Cahiers pour l’Analyse 10, 131–149 (1969)Google Scholar
  17. 17.
    Bonfiglioli S.: Aristotle’s Non-Logical Works and the Square of Oppositions in Semiotics. Logica Universalis 2(1), 107–126 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Boyd, G.A., Belt, T., Rhoda, A.: The hexagon of opposition: thinking outside the aristotelian box (2008). http://www.gregboyd.org/essays/warning-egghead-essays/the-hexagon-essay/
  19. 19.
    Cavaliere, F.: Fuzzy syllogisms, numerical square, triangle of contraries, inter-bivalence. In: [7]Google Scholar
  20. 20.
    Chellas B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  21. 21.
    Czezowski T.: On certain peculiarities of singular propositions. Mind 64(255), 392–395 (1955)CrossRefGoogle Scholar
  22. 22.
    Demey, L.: Reversed Squares of Opposition in PAL and DEL (2010). http://www.square-of-opposition.org/square2010power/demey.pdf
  23. 23.
    Demey, L.: Structures of oppositions in public announcement Logic. In: [7]Google Scholar
  24. 24.
    Dubois D., Prade H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Universalis 6, 1–2 (2012)Google Scholar
  25. 25.
    Fontanille J., Zilberberg C.: Tension et signification. Mardaga, Sprimont (1998)Google Scholar
  26. 26.
    Gaiser K.: Platons ungeschriebene Lehre. Ernst Klett Verlag, Stuttgart (1962)Google Scholar
  27. 27.
    Gallais P.: Dialectique du récit médiéval (Chrétien de Troyes et l’hexagone logique). Rodopi, Amsterdam (1982)Google Scholar
  28. 28.
    Ganter B., Wille R.: Formale Begriffsanalyse. Mathematische Grundlagen. Springer, Berlin (1996)MATHCrossRefGoogle Scholar
  29. 29.
    Gärdenfors P.: Conceptual Spaces The Geometry of Thought. MIT Press, Cambridge MA (2000)Google Scholar
  30. 30.
    Gardies J.-L.: Essai sur la logique des modalités. Presses Universitaires de France, Paris (1979)Google Scholar
  31. 31.
    Ginzberg S.: Note sur le sens équivoque des propositions particulières. Revue de Métaphysique et de Morale 21(1), 101–106 (1913)Google Scholar
  32. 32.
    Gottschalk W.H.: The theory of quaternality. J. Symb. Log. 18, 193–196 (1953)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Greimas A.J.: Du sens. Seuil, Paris (1970)Google Scholar
  34. 34.
    Groupe d’Entrevernes: Analyse sémiotique des textes—Introduction Théorie Pratique. Presses Universitaires de Lyon, Lyon (1979)Google Scholar
  35. 35.
    Guitart, R.: Borromean Objects, as examplified by the group G 168 of Klein’s Quartic, linked with Moving Logic (2008). http://www-lmpa.univ-littoral.fr/CT08/slides/Guitart.ppt
  36. 36.
    Guitart R.: A hexagonal framework of the field F 4 and the associated Borromean logic. Logica Universalis 6, 1–2 (2012)CrossRefGoogle Scholar
  37. 37.
    Horn L.: A Natural History of Negation. CSLI Publications, Stanford (2001)Google Scholar
  38. 38.
    Horn, L.: Histoire d’*O: Lexical pragmatics and the geometry of opposition. In: [8]Google Scholar
  39. 39.
    Hösle V.: I fondamenti dell’aritmetica e della geometria in Platone. Vita e Pensiero, Milano (1994)Google Scholar
  40. 40.
    Hruschka J., Joerden J.C.: Supererogation: Vom deontologischen Sechseck zum deontologischen Zehneck. Zugleich ein Beitrag zur strafrechtlichen Grundlagenforschung. Archiv für Rechts- und Sozialphilosophie 73(1), 104–120 (1987)Google Scholar
  41. 41.
    Hughes G.E., Cresswell M.J: A New Introduction to Modal Logic. Routledge, London (1987)Google Scholar
  42. 42.
    Ioan P.: Stéphane Lupasco et la propension vers le contradictoire dans la logique roumaine. In: Badescu, H., Nicolescu, B. (eds) Stéphane Lupasco, L’homme et l’oeuvre, Rocher, Monaco (1999)Google Scholar
  43. 43.
    Jacoby P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast 24, 32–56 (1950)Google Scholar
  44. 44.
    Jacquette, D.: Thinking outside the square of opposition box. In: [7]Google Scholar
  45. 45.
    Jaspers, D.: Logic of colours. The mereological algebra of colours (2010). http://www.crissp.be/pdf/publications/handoutmitdj.pdf
  46. 46.
    Jaspers D.: Logic of Colours in Historical Perspective. Log. Universalis 6, 1–2 (2012)Google Scholar
  47. 47.
    Jaspers, D., Larson, R.: Oppositions between quantifiers, colours and numerals—broad and narrow language faculties (2011). https://lirias.hubrussel.be/handle/123456789/5644Google Scholar
  48. 48.
    Jespersen O.: The Philosophy of Grammar. Allen and Unwin, London (1924)Google Scholar
  49. 49.
    Kalinowski G.: La logique des normes. Presses Universitaires de France, Paris (1972)Google Scholar
  50. 50.
    Khomski, Y.: William of sherwood, singular propositions and the hexagon of opposition. In: [8]Google Scholar
  51. 51.
    Koslow A.: A Structuralist Theory of Logic. Cambridge University Press, Cambridge (1992)MATHCrossRefGoogle Scholar
  52. 52.
    Lupasco S.: Le principe d’antagonisme et la logique de l’énergie. Hermann, Paris (1951)Google Scholar
  53. 53.
    Luzeaux D., Sallantin J., Dartnell C.: Logical extensions of Aristotle’s square. Log. Universalis 2(1), 167–187 (2008)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Milner J.-C.: Le périple structural. Figures et paradigme. Verdier, Paris (2002)Google Scholar
  55. 55.
    Moretti A.: Geometry for Modalities? Yes: through ‘n-opposition theory’. In: Béziau, J.-Y., Costa-Leite, A., Facchini, A. (eds) Aspects of Universal Logic, University of Neuchâtel, Neuchâtel (2004)Google Scholar
  56. 56.
    Moretti, A.: The Geometry of Logical Opposition. PhD Thesis, University of Neuchâtel, Switzerland (2009)Google Scholar
  57. 57.
    Moretti A.: The Geometry of Standard Deontic Logic. Log. Universalis 3(1), 19–57 (2009)MathSciNetCrossRefGoogle Scholar
  58. 58.
    Moretti, A.: The geometry of opposition and the opposition of logic to it. In: [78]Google Scholar
  59. 59.
    Moretti A.: The critics of paraconsistency and of many-valuedness and the geometry of oppositions. Log. Log. Philos. 19, 63–94 (2010)MathSciNetMATHGoogle Scholar
  60. 60.
    Moretti, A.: From the “logical square” to the “logical poly-simplexes”: a quick survey of what happened in between. In: [8]Google Scholar
  61. 61.
    Moretti, A.: A cube extending Piaget’s and Gottschalk’s formal square (2010). http://alessiomoretti.perso.sfr.fr/NOTMorettiCorte2010.pdf
  62. 62.
    Mugler C.: Platon et la recherche mathématique de son époque. Heitz, Strasbourg-Zurich (1948)Google Scholar
  63. 63.
    Neuman Y.: A Novel Generic Conception of Structure: Solving Piaget’s Riddle. In: Valsiner, J., Rudolph, R. (eds) Mathematical Models for Research on Cultural Dynamics: Qualitative Methods for the Social Sciences, Routledge, London (2010)Google Scholar
  64. 64.
    Øhrstrøm P., Hasle P.: A.N. Prior’s Rediscovery of Tense Logic. Erkenntnis 39, 23–50 (1993)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Parsons, T.: The traditional square of opposition. Stanford Encyclopedia of Philosophy (2006). http://plato.stanford.edu/entries/square/
  66. 66.
    Peirce, C.S.: The new elements of mathematics, vol. III-1. In: Eisele, C. (ed.) The Hague-Paris. Walter De Gruyter, New York (1976)Google Scholar
  67. 67.
    Pellissier R.: “Setting” n-opposition. Log. Universalis 2(2), 235–263 (2008)MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Pellissier, R.: 2-opposition and the topological hexagon. In: [8]Google Scholar
  69. 69.
    Piaget J.: Traité de logique. Essai de syllogistique opératoire. Armand Colin, Paris (1949)Google Scholar
  70. 70.
    Piaget J.: Structuralism. Basic Books, New York (1970)Google Scholar
  71. 71.
    Read, S.: John Buridan’s theory of consequence and his octagons of oppositions. In: [7]Google Scholar
  72. 72.
    Reale G.: Per una nuova interpretazione di Platone. Rilettura della metafisica dei grandi dialoghi alla luce delle “Dottrine non scritte”. Vita e Pensiero, Milano (1984)Google Scholar
  73. 73.
    Richard M.-D.: L’enseignement oral de Platon Une nouvelle interprétation du platonisme. Cerf, Paris (1986)Google Scholar
  74. 74.
    Ricoeur, P.: La grammaire narrative de Greimas. Actes Sémiot. Doc. 15 (1980)Google Scholar
  75. 75.
    Sart, F.: Truth tables and oppositional solids (2010). http://alessiomoretti.perso.sfr.fr/NOTSartCorte2010.pdf
  76. 76.
    Sauriol P.: Remarques sur la Théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)CrossRefGoogle Scholar
  77. 77.
    Sauriol P.: La structure tétrahexaédrique du système complet des propositions catégoriques. Dialogue 15, 479–501 (1976)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Savardi, U. (ed.): The perception and cognition of contraries. McGraw-Hill, Milano (2009)Google Scholar
  79. 79.
    Sesmat A.: Logique II. Les raisonnements, la logistique. Hermann, Paris (1951)Google Scholar
  80. 80.
    Seuren, P.A.M.: From logical intuitions to natural logic. In: [8]Google Scholar
  81. 81.
    Smessaert H.: On the 3D visualisation of logical relations. Log. Universalis 3(2), 303–332 (2009)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Smessaert H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Universalis 6, 1–2 (2012)Google Scholar
  83. 83.
    Staschok M.: Non-traditional squares of predication and quantification. Log. Universalis 2(1), 77–85 (2008)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Strößner, C., Strobach, N.: Veridications and their square of oppositions. In: [8]Google Scholar
  85. 85.
    Thomas R.: Analyse et synthèse de réseaux de régulations en termes de boucles de rétroaction. In: Felz, B., Crommelinck, M., Goujon, P. (eds) Auto-organisation et émergence dans les sciences de la vie., Ousia, Bruxelles (1999)Google Scholar
  86. 86.
    Toth I.: Aristotele e i fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel “Corpus Aristotelicum”. Vita e Pensiero, Milano (1997)Google Scholar
  87. 87.
    Vasil’ev, N.A.: O chastnykh suzhdeniiakh, o treugol’nike protivopolozhnostei, o zakone iskliuchennogo chetvertogo. In: Voobrazhaemaia logika. Izbrannye trudy. Nauka, Moskow (1989) (in Russian)Google Scholar
  88. 88.
    Vernant D.: Pour une logique dialogique de la dénégation, In: Armengaud, F., Popelard, M.-D., Vernant, D. (eds.) Du dialogue au texte. Autour de Francis Jacques. Kimé, Paris (2003)Google Scholar
  89. 89.
    Wirth O.: Le symbolisme astrologique. Dervy, Paris (1973)Google Scholar
  90. 90.

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.NiceFrance

Personalised recommendations