Logica Universalis

, Volume 6, Issue 1–2, pp 45–67 | Cite as

From the Logical Square to Blanché’s Hexagon: Formalization, Applicability and the Idea of the Normative Structure of Thought

Article

Abstract

The square of opposition and many other geometrical logical figures have increasingly proven to be applicable to different fields of knowledge. This paper seeks to show how Blanché generalizes the classical theory of oppositions of propositions and extends it to the structure of opposition of concepts. Furthermore, it considers how Blanché restructures the Apuleian square by transforming it into a hexagon. After presenting G. Kalinowski’s formalization of Blanché’s hexagonal theory, an illustration of its applicability to mathematics, to modal logic, and to the logic of norms is depicted. The paper concludes by criticizing Blanché’s claim according to which, his logical hexagon can be considered as the objective basis of the structure of the organisation of concepts, and as the formal structure of thought in general. It is maintained that within the frame of diagrammatic reasoning Blanché’s hexagon keeps its privileged place as a “nice” and useful tool, but not necessarily as a norm of thought.

Mathematics Subject Classification (2010)

Primary 03A10 Secondary 03B05 03B45 

Keywords

Apuleian square Blanché’s hexagon formalization hexagon of modalities norm of thought intellectual structures principle of non-contradiction diagrammatic reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béziau J.-Y.: New light on the square of opposition and its nameless corner. Logic. Invest. 10, 218–232 (2003)Google Scholar
  2. 2.
    Blanché R.: Raison et discours. Vrin, Paris (1967)Google Scholar
  3. 3.
    Blanché, R.: Structures Intellectuelles, Essai sur l’organisation systématique des concepts. Vrin, Paris (1966)Google Scholar
  4. 4.
    Dörfler, W.: Instances of diagrammatic reasoning. http://www.math.uncc.edu/~sae/dg3/dorfler1.pdf
  5. 5.
    Gallais, P.: Hexagonal and Spiral Structure in Medieval Narrative. Yale French Studies No.51, Approaches to Medieval Romance. Yale University Press, London, pp. 115–132 (1974) (translated by Vincent Pollina)Google Scholar
  6. 6.
    Horn L.R.: A Natural History of Negation. CSLI Publications, Stanford (2001)Google Scholar
  7. 7.
    Kalinowski, G.: La logique déductive, Essai de présentation aux juristes. Presses Universitaires de France, Paris (1996)Google Scholar
  8. 8.
    Kalinowski, G.: Axiomatisation et formalisation de la théorie hexagonale de l’opposition de M. Blanché (système B). Les études philosophiques 22, 203–208 (1967)Google Scholar
  9. 9.
    Łukasiewicz J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press, Oxford (1951)MATHGoogle Scholar
  10. 10.
    Łukasiewicz, J.: In: Woleński, J. (ed.) O zasadzie sprzeczności u Arystotelesa. [The principle of contradiction in Aristotle], 2nd edn. Państwowe Wydawnictwo Naukowe, Warszawa (1987)Google Scholar
  11. 11.
    Moretti, A.: Geometry for Modalities? Yes: Through n-Opposition Theory. In: Béziau, J.-Y., Costa-Leite, A., Facchini, A. (eds.) Aspects of Universal Logic, Cahiers de logique, Université de Neuchâtel (2004)Google Scholar
  12. 12.
    Parsons, T.: The square of opposition in Stanford Encyclopedia of philosophy. http://plato.stanford.edu/entries/square/. First published Fri Aug 8, 1997; substantive revision Sun Oct 1, 2006
  13. 13.
    Vasiliev N.: On particular judgments, the triangle of oppositions and the law of the excluded fourth (Russian). Kazan University Press, Kazan (1970)Google Scholar
  14. 14.
    Wallon, H.: Les origines de la pensée chez l’enfant. I: Presses Universitaires de France, Paris (1945)Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Ecole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations