Logica Universalis

, Volume 6, Issue 1–2, pp 119–147 | Cite as

A Hexagonal Framework of the Field \({\mathbb{F}_4}\) and the Associated Borromean Logic

Article

Abstract

The hexagonal structure for ‘the geometry of logical opposition’, as coming from Aristoteles–Apuleius square and Sesmat–Blanché hexagon, is presented here in connection with, on the one hand, geometrical ideas on duality on triangles (construction of ‘companion’), and on the other hand, constructions of tripartitions, emphasizing that these are exactly cases of borromean objects. Then a new case of a logical interest introduced here is the double magic tripartition determining the semi-ring \({\mathcal{B}_3}\) and this is a borromean object again, in the heart of the semi-ring \({{\rm Mat}_{3}(\mathbb{B}_{\rm Alg})}\) . With this example we understand better in which sense the borromean object is a deepening of the hexagon, in a logical vein. Then, and this is our main objective here, the Post-Mal’cev full iterative algebra \({\mathbb{P}_4 = \mathbb{P}(\mathbb{F}_4)}\) of functions of all arities on \({\mathbb{F}_4}\) , is proved to be a borromean object, generated by three copies of \({\mathbb{P}_2}\) in it. This fact is induced by a hexagonal structure of the field \({\mathbb{F}_4}\) . This hexagonal structure is seen as precisely a geometrical addition to standard boolean logic, exhibiting \({\mathbb{F}_4}\) as a ‘boolean manifold’. This structure allows to analyze also \({\mathbb{P}_4}\) as generated by adding to a boolean set of logical functions a very special modality, namely the Frobenius squaring map in \({\mathbb{F}_4}\) . It is related to the splitting of paradoxes, to modified logic, to specular logic. It is a setting for a theory of paradoxical sentences, seen as computations of movements on the bi-hexagonal link among the 12 classical logics on a set of 4 values.

Mathematics Subject Classification (2010)

00A06 03B45 03B50 03E02 03G05 06Exx 06E25 06E30 11Txx 18xx 

Keywords

Square of oppositions hexagon of opposition borromean object boolean algebra specular logic modality many-valued logics finite fields Aristotle Apuleius Sesmat Blanché 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Béziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig 10, 218–233 (2003)Google Scholar
  2. 2.
    Blanché R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)CrossRefGoogle Scholar
  3. 3.
    Blanché, R.: Structures intellectuelles. Vrin (1966)Google Scholar
  4. 4.
    Grosjean P.V.: La logique sur le corps de rupture des paradoxes. Logique. Anal. nouv. Sér 16, 535–562 (1973)MathSciNetMATHGoogle Scholar
  5. 5.
    Guitart, R.: L’idée de logique spéculaire, Journées Catégories, Algèbres, Esquisses, Néo-esquisses. Caen, 27–30 September 1994Google Scholar
  6. 6.
    Guitart, R.: Évidence et étrangeté. PUF (2000)Google Scholar
  7. 7.
    Guitart, R.: Moving logic, from Boole to Galois, Colloque International “Charles Ehresmann: 100 ans”, 7–9 October 2005, Amiens. Cahiers Top Géo Diff Cat. XLVI-3, 196–198 (2005)Google Scholar
  8. 8.
    Guitart, R.: Figures, lettres et preuves: pulsation et figurations au lieu de l’écriture, Colloque. Mutations de l’écriture: Arts et sciences, ENS, 19–20 october 2007 (2011, to appear)Google Scholar
  9. 9.
    Guitart, R.: Figures, lettres et preuves: dimensions et pulsation de l’écriture, 17ème Colloque inter-IREM Épistémologie. La figure et la lettre, Nancy, 23–24 may 2008. Presses Universitaires de Nancy, 147–171 (2011)Google Scholar
  10. 10.
    Guitart, R.: Borromean Objects, as examplified by the group G 168 of Klein’s quartic, linked with moving logic, abstract of a talk. Category Theory 2008, 22–28 June 2008. Abstracts, p. 37. http://www-lmpa.univ-littoral.fr/CT08/
  11. 11.
    Guitart R.: Klein’s group as a borromean object. Cahiers Top. Géo. Diff. Cat L-2, 144–155 (2009)MathSciNetGoogle Scholar
  12. 12.
    Mal’tsev A.I.: Iterative algebra and Post’s varieties (Russian). Algebra i Logika (Sem.) 5, 5–24 (1966)MATHGoogle Scholar
  13. 13.
    Lau D.: Function Algebras on Finite Sets. Springer, Berlin (2006)MATHGoogle Scholar
  14. 14.
    Moretti, A.: The geometry of logical opposition. PhD Thesis, Université de Neuchâtel, Switzerland, March 2009Google Scholar
  15. 15.
    Pellissier R.: Setting”-n-Opposition. Logica Universalis 2, 235–263 (2008)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Post E.L.: Introductions to a general theory of elementary propositions. Am. J. Math 43, 163–185 (1921)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Sesmat, A.: Logique: 1. Les définitions, les jugements. 2. Les raisonnements, la logistique. Hermann (1951)Google Scholar
  18. 18.
    Sheffer H.M.: A set of five independent postulates for Boolean algebras with applications to logical constants. Trans. Am. Math. Soc 14, 481–488 (1913)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Tait P.G.: On knots. Trans. Roy. Soc. Edin 28, 145–190 (1877)MATHGoogle Scholar
  20. 20.
    Vappereau, J.-M.: Ha! Mon très Hâle (Les itinéraires du dire), Lu, Topologie en Extension, Paris, 1998, pp. 229–239. See also other papers available at http://jeanmichel.vappereau.free.fr/
  21. 21.
    Webb D.L.: Definition of Post’s generalized negative and maximum in terms of one binary operator. Am. J. math 58, 193–194 (1936)CrossRefGoogle Scholar
  22. 22.
    Zylinski M.E.: Some remarks concerning the theory of deduction. Fund. Math 7, 203–209 (1925)MATHGoogle Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.IMJ Université Paris DiderotParisFrance

Personalised recommendations