Logica Universalis

, Volume 6, Issue 1–2, pp 171–199 | Cite as

The Classical Aristotelian Hexagon Versus the Modern Duality Hexagon

  • Hans SmessaertEmail author


Peters and Westerståhl (Quantifiers in Language and Logic, 2006), and Westerståhl (New Perspectives on the Square of Opposition, 2011) draw a crucial distinction between the “classical” Aristotelian squares of opposition and the “modern” Duality squares of opposition. The classical square involves four opposition relations, whereas the modern one only involves three of them: the two horizontal connections are fundamentally distinct in the Aristotelian case (contrariety, CR vs. subcontrariety, SCR) but express the same Duality relation of internal negation (SNEG). Furthermore, the vertical relations in the classical square are unidirectional, whereas in the modern square they are bidirectional. The present paper argues that these differences become even bigger when two more operators are added, namely the U (\({{\equiv} {\rm A}\,{\vee} \,{\rm E} }\) , all or no) and Y (\({\equiv{\rm I} \,{\wedge} \,{\rm O}}\) , some but not all) of Blanché (Structures Intellectuelles, 1969). In the resulting Aristotelian hexagon the two extra nodes are perfectly integrated, yielding two interlocking triangles of CR and SCR. In the duality hexagon by contrast, they do not enter into any relation with the original square, but constitute a independent pair of their own, since they are their own SNEGs. Hence, they not only stand in a relation of external NEG, but also in one of duality. This reflexive nature of the SNEG will be shown to result in defective monotonicity configurations for the pair, namely the absence of right-monotonicity (on the predicate argument). In the second half of the paper, we present an overview of those hexagonal structures which are both Aristotelian and Duality configurations, and those which are only Aristotelian.

Mathematics Subject Classification (2010)

Primary 03B45 03B10 03B65 03G05 Secondary 05C99 47H05 


Logical square logical hexagon aristotelian relations of opposition duality relations external versus internal negation monotonicity properties modal logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barwise J., Cooper R.: Generalized quantifiers and natural language. Linguist. Philos. 4, 159–219 (1981)zbMATHCrossRefGoogle Scholar
  2. 2.
    Blanché, R.: Structures Intellectuelles. Essai sur l’organisation systématique des concepts. Librairie Philosophique J. Vrin, Paris (1969)Google Scholar
  3. 3.
    Deschamps K., Smessaert H.: The logical-semantic structure of legislative sentences. Comparative legilinguistics. Int. J. Legal Commun. 1, 73–87 (2009)Google Scholar
  4. 4.
    Gamut L.T.F.: Logic, Language and Meaning. Intensional Logic and Logical Grammar, vol. 2. University of Chicago press, Chicago (1991)Google Scholar
  5. 5.
    Gottschalk W.H.: The theory of quaternality. J. Symb. Log. 18, 193–196 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Horn, L.R.: Hamburgers and truth: why Gricean explanation is Gricean. In: Hall, K., et al. (eds.) Proceedings of the Sixteenth Annual Meeting of the Berkeley Linguistics Society, pp. 454–471. Berkeley Linguistics Society, Berkeley (1990)Google Scholar
  7. 7.
    Jacoby P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast. 24, 32–56 (1950)Google Scholar
  8. 8.
    Keenan, E.L.: The semantics of determiners. In: Lappin, S. (ed.) The Handbook of Contemporary Semantic Theory, pp. 41–63. Blackwell, Oxford (1996)Google Scholar
  9. 9.
    Keenan, E.L.: How much logic is built into natural language? In: Dekker, P., et al. (eds.) Proceedings of 15th Amsterdam Colloquium, pp. 39–45. ILLC, Amsterdam (2005)Google Scholar
  10. 10.
    Kratzer, A.: Modality. In: von Stechow, A., Wunderlich, D. (eds.) Semantics: An International Handbook of Contemporary Research, pp. 639–650. Walter de Gruyter, Berlin (1991)Google Scholar
  11. 11.
    Löbner S.: Wahr neben Falsch. Duale Operatoren als die Quantoren natürlicher Sprache. Max Niemeyer Verlag, Tübingen (1990)CrossRefGoogle Scholar
  12. 12.
    McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. ( (2006/2010)
  13. 13.
    Moretti, A.: The geometry of logical opposition. PhD Thesis, University of Neuchâtel, Switzerland (2009)Google Scholar
  14. 14.
    Moretti A.: The geometry of standard deontic logic. Log. Univ. 3/1, 19–57 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Moretti, A.: The geometry of oppositions and the opposition of logic to it. In: Bianchi, I., Savardi, U. (eds.) The Perception and Cognition of Contraries, pp. 29–60. McGraw-Hill, Milan (2009)Google Scholar
  16. 16.
    Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. ( (1997/2006)
  17. 17.
    Partee B.H., ter Meulen A.G.B., Wall R.E.: Mathematical Methods in Linguistics. Kluwer, Dordrecht (1990)zbMATHCrossRefGoogle Scholar
  18. 18.
    Pellissier R.: Setting n-opposition. Log. Univ. 2/2, 235–263 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Peters S., Westerståhl D.: Quantifiers in Language and Logic. Clarendon Press, Oxford (2006)Google Scholar
  20. 20.
    Piaget, J.: Traité de logique. Essai de logistique opératoire. Dunod, Paris (1949/1972)Google Scholar
  21. 21.
    Sesmat A.: Logique II. Les Raisonnements. La syllogistique. Hermann, Paris (1951)Google Scholar
  22. 22.
    Seuren P.: Language from Within Volume II: The Logic of Language. Oxford University Press, Oxford (2010)Google Scholar
  23. 23.
    Smessaert H.: Monotonicity properties of comparative determiners. Linguist. Philos. 19/3, 295–336 (1996)CrossRefGoogle Scholar
  24. 24.
    Smessaert, H.: A three-valued approach to (non-)conservativity and (co-)intersectivity with (not) all and (not) only. Talk at the Logic Now and Then Conference, H.U.Brussel, 5–7 Nov 2008 (2008)Google Scholar
  25. 25.
    Smessaert H.: On the 3D-visualisation of logical relations. Log. Univ. 3/2, 303–332 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Smessaert, H.: On the fourth Aristotelian relation of opposition: subalternation versus non-contradiction. Talk at the Second NOT-(N-Opposition Theory)-Workshop, K.U.Leuven, 23 Jan 2010 (2010)Google Scholar
  27. 27.
    Smessaert, H.: Duality and reversibility relations beyond the square. Talk at the Third NOT-(N-Opposition Theory)-Workshop, 22–23 Jun 2010. Université de Nice (2010)Google Scholar
  28. 28.
    Smessaert, H.: On the hybrid nature of the Aristotelian square and the Sesmat-Blanché hexagon. Talk at the 14th Congress of Logic, Methodology and Philosophy of Science, 19–26 Jul 2011. CLMPS14, Université de Nancy (2011)Google Scholar
  29. 29.
    van Benthem J.: Essays in Logical Semantics. Foris, Dordrecht (1986)zbMATHCrossRefGoogle Scholar
  30. 30.
    van Eijck J.: Generalized quantifiers and traditional logic. In: Benthem, J., ter Meulen, A. (eds) Generalized Quantifiers in Natural Language,, pp. 1–19. Foris, Dordrecht (1985)Google Scholar
  31. 31.
    Westerståhl, D.: Classical vs. modern squares of opposition, and beyond. In: Béziau, J-Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Proceedings of the First International Conference on The Square of Oppositions, Montreux, Switzerland, 1–3 Jun 2007. Peter lang, Bern (2011, to appear)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Department of LinguisticsK. U. LeuvenLeuvenBelgium

Personalised recommendations