Logica Universalis

, Volume 5, Issue 1, pp 21–73 | Cite as

Omnipresence, Multipresence and Ubiquity: Kinds of Generality in and Around Mathematics and Logics



A prized property of theories of all kinds is that of generality, of applicability or least relevance to a wide range of circumstances and situations. The purpose of this article is to present a pair of distinctions that suggest that three kinds of generality are to be found in mathematics and logics, not only at some particular period but especially in developments that take place over time: ‘omnipresent’ and ‘multipresent’ theories, and ‘ubiquitous’ notions that form dependent parts, or moments, of theories. The category of ‘facets’ is also introduced, primarily to assess the roles of diagrams and notations in these two disciplines. Various consequences are explored, starting with means of developing applied mathematics, and then reconsidering several established ways of elaborating or appraising theories, such as analogising, revolutions, abstraction, unification, reduction and axiomatisation. The influence of theories already in place upon theory-building is emphasised. The roles in both mathematics and logics of set theory, abstract algebras, metamathematics, and model theory are assessed, along with the different relationships between the two disciplines adopted in algebraic logic and in mathematical logic. Finally, the issue of monism versus pluralism in these two disciplines is rehearsed, and some suggestions are made about the special character of mathematical and logical knowledge, and also the differences between them. Since the article is basically an exercise in historiography, historical examples and case studies are described or noted throughout.

Mathematics Subject Classification (2000)

Primary 00A30 01A55 01A60 01A85 03-03 03-99 Secondary 00A35 00A69 00A71 00A79 03B10 03C55 03G05 30-03 31-03 


History and philosophy of pure and applied mathematics history and philosophy of symbolic logics parts and moments generality of theories theory change monism and pluralism sets and multisets abstract algebras metamathematics model theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aberdein, A., Read, S.: The philosophy of alternative logics. In: [Haaparanta 2009], pp. 613–723 (2009)Google Scholar
  2. 2.
    Alberts, G.: Jaren Van Brazening: Toepassingsgerichte Initiatieven in De Nederlandse Wiskundebeoefening 1945–1960. Amsterdam University Press, Amsterdam (1998)Google Scholar
  3. 3.
    Allwein, G., Barwise, J. (eds): Logical Reasoning with Diagrams. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  4. 4.
    Anellis I.H.: Russell and his sources for non-classical logics. Log. Univers. 3, 153–218 (2009)MathSciNetGoogle Scholar
  5. 5.
    Awodey S., Reck E.H.: Completeness and categoricity. Hist. Philos. Log. 22(1–30), 77–94 (2002)MathSciNetGoogle Scholar
  6. 6.
    Bartley W.W.: The Retreat to Commitment. Chatto and Windus, London (1964)Google Scholar
  7. 7.
    Bateman, H.: Report on the history and present state of the theory of integral equations. Report of the British Association for the dvancement of Science, pp. 345–424 (1911)Google Scholar
  8. 8.
    Bazhanov V.A.: Non-classical stems from classical: N. A. Vasiliev’s approach to logic and his reassessment of the square of opposition. Log. Univers. 2, 71–76 (2008)MATHMathSciNetGoogle Scholar
  9. 9.
    Beall J.L., Restall G.: Logical Pluralism. Oxford University Press, Oxford (2005)Google Scholar
  10. 10.
    Beller M.: Quantum Dialogue: the Making of a Revolution. Chicago University Press, Chicago (1999)MATHGoogle Scholar
  11. 11.
    Bernhard P.: Euler-Diagramme. Zur Morphologie einer Represäntationsform in der Logik. Mentis, Paderborn (2001)Google Scholar
  12. 12.
    Béziau J.-Y.: What is a logic? Towards axiomatic emptiness. Log. Invest. 16, 272–279 (2010)Google Scholar
  13. 13.
    Blizard W.D.: Multiset theory. Notre Dame J. Formal Log. 30, 36–66 (1989)MATHMathSciNetGoogle Scholar
  14. 14.
    Bollinger M.: Geschichtliche Entwicklung des Homologiebegriffs. Arch. Hist. Exact Sci. 9, 94–166 (1972)MATHMathSciNetGoogle Scholar
  15. 15.
    Bos H.J.M.: Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept of Construction. Springer, New York (2001)MATHGoogle Scholar
  16. 16.
    Bottazzini U.: The Higher calculus. A History of Real and Complex Analysis from Euler to Weierstrass. Springer, New York (1986)MATHGoogle Scholar
  17. 17.
    Brady G.: From Peirce to Skolem. A Neglected Chapter in the History of Logic. Elsevier, Amsterdam (2000)MATHGoogle Scholar
  18. 18.
    Brenner J.E.: Logic in Reality. Springer, Dordrecht (2008)Google Scholar
  19. 19.
    Browder, F.E. (ed.): Mathematical Developments Arising from Hilbert Problems, 2 vols. American Mathematical Society, Providence (1976)Google Scholar
  20. 20.
    Burkhardt H.: Über Vecktoranalysis. Jahresbericht der Deutschen Mathematiker-Vereinigung 5, 43–52 (1897)Google Scholar
  21. 21.
    Burkhardt, H., Meyer, W.F.: Potentialtheorie. In: [Burkhardt and Wirtinger 1899–1916], pp. 464–503 (article IIA7b) (1900)Google Scholar
  22. 22.
    Burkhardt, H., Wirtinger W. (eds.): Encyclopädie der mathematischen Wissenschaften, vol. 2, part A. Teubner, Leipzig (1899–1916)Google Scholar
  23. 23.
    Byron, M. (ed.): Satisficing and Maximizing: Moral Theorists on Practical Reason. Cambridge University Press, Cambridge (2004)Google Scholar
  24. 24.
    Cajori, F.: A History of Mathematical Notations, 2 vols. Open Court, La Salle (1928, 1929)Google Scholar
  25. 25.
    Campbell-Kelly, M., Croarken, M., Flood, R., Robson, E. (eds.): The history of mathematical tables: from Sumer to spreadsheets (2003)Google Scholar
  26. 26.
    Caramalho Domingues J.: Lacroix and the Calculus. Birkhäuser, Basel (2008)MATHGoogle Scholar
  27. 27.
    Cavaillès J.: Méthode Axiomatique et Formalisme, 3 pts. Hermann, Paris (1938)Google Scholar
  28. 28.
    Chabert J.L. et al.: A History of Algorithms. From the Pebble to the Microchip. Springer, Berlin (1999)MATHGoogle Scholar
  29. 29.
    Champlin T.S.: Reflexive Paradoxes. Routledge, London (1988)Google Scholar
  30. 30.
    Chrisomalis S.: Numerical Notation: a Comparative History. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  31. 31.
    Cooke R.L.: Uniqueness of trigonometric series and descriptive set theory, 1870–1985. Arch. Hist. Exact Sci. 45, 281–334 (1993)MATHMathSciNetGoogle Scholar
  32. 32.
    Corcoran J.: Three logical theories. Philos. Sci. 36, 153–177 (1969)Google Scholar
  33. 33.
    Corcoran J.: Gaps between logical theory and mathematical practise. In: Bunge, M. (ed.) The Methodological Unity of Science, pp. 23–50. Reidel, Dordrecht (1973)Google Scholar
  34. 34.
    Corcoran J.: Categoricity. Hist. Philos. Log. 1, 187–207 (1980)MathSciNetGoogle Scholar
  35. 35.
    Corry L.: Modern algebra and the Rise of Mathematical Structures. Birkhäuser, Basel (1996)MATHGoogle Scholar
  36. 36.
    Crowson R.A.: Classification and Biology. Heinemann Educational Books, London (1970)Google Scholar
  37. 37.
    Dauben, J.W.: Georg Cantor. Harvard University Press, Cambridge [Repr. Princeton University Press, Princeton, 1990] (1979)Google Scholar
  38. 38.
    Dauben, J.W., Scriba, C.J. (ed.): Writing the History of Mathematics: its Historical Development. Birkhäuser, Basel (2002)MATHGoogle Scholar
  39. 39.
    Davis, M. (ed.): The Undecidable. Raven Press, Hewlett (1965)Google Scholar
  40. 40.
    Dawson, A.: Whitehead’s Universal algebra. In: Weber, M., Desmond, W. Jr. (eds.) Handbook of Whiteheadian Process Thought, vol. 2, ontos verlag, Frankfurt, vol. 1, pp. 67–86 (2008)Google Scholar
  41. 41.
    Deakin, M.A.B.: The development of the Laplace transform, 1737–1937. Part 1. Arch. Hist. Exact Sci. 25, 343–390 (1981)Google Scholar
  42. 42.
    Deakin, M.A.B.: The development of the Laplace transform, 1737–1937. Part 2. Arch. Hist. Exact Sci. 26, 351–381 (1982)Google Scholar
  43. 43.
    De Morgan, A.: First notions of logic (preparatory to the study of geometry), 1st edn. Taylor and Walton, London [2nd edn. 1840; repr. as Formal logic, Walton and Maberly, London, 1847, ch. 1] (1839)Google Scholar
  44. 44.
    De Morgan A.: On infinity, and on the sign of equality. Trans. Cambridge Philos. Soc. 11, 145–189 (1866)Google Scholar
  45. 45.
    De Morgan A.: Review of a book on geometry. The Athenaeum 2, 71–73 (1868)Google Scholar
  46. 46.
    Deiser O.: On the development of the notion of a cardinal number. Hist. Philos. Log. 31, 123–143 (2010)MATHMathSciNetGoogle Scholar
  47. 47.
    Demopoulos W.: Frege, Hilbert, and the conceptual structure of model theory. Hist. Philos. Log. 15, 211–226 (1994)MATHMathSciNetGoogle Scholar
  48. 48.
    Descartes, R.: La géométrie, Leiden: Jan Maire [at the end of the Discours de la Méthode; many reprs. and transs] (1637)Google Scholar
  49. 49.
    Dhombres J.G.: Quelques aspects de l’histoire des équations fonctionnelles. Arch. Hist. Exact Sci. 36, 91–181 (1986)MathSciNetMATHGoogle Scholar
  50. 50.
    Dubislav, W.: Die Definition, 3rd edn. Meiner, Leipzig [Repr. 1981] (1931)Google Scholar
  51. 51.
    Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)MATHGoogle Scholar
  52. 52.
    Ebbinghaus H.-D.: Ernst Zermelo. An Approach to his Life and Work. Springer, Berlin (2007)MATHGoogle Scholar
  53. 53.
    Ehrlich, P. (ed.): Real Numbers, Generalizations of the Reals, and Theories of Continua. Kluwer, Dordrecht (1994)Google Scholar
  54. 54.
    Epstein R.L.: Five Ways of Saying “therefore”: Arguments, Proofs, Conditionals, Cause and Effect, Explanations. Wadsworth, Belmont (2002)Google Scholar
  55. 55.
    Epstein R.L., Carnielli W.: Computability: Computable Functions, Logic, and the Foundations of Mathematics, 3rd edn. Advanced Reasoning Forum, Socorro, New Mexico (2008)Google Scholar
  56. 56.
    Ferreirós, J., Gray, J.J. (eds): The Architecture of Modern Mathematics. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  57. 57.
    Field H.: Pluralism in logic. Rev. Symb. Log. 2, 342–359 (2009)MATHMathSciNetGoogle Scholar
  58. 58.
    Fleckenstein, J.O.: Vorwort des Herausgebers. In: Euler, L. (ed.) Opera Omnia, ser. 2, vol. 5. Orell Füssli, vii-l, Zurich [On the principle of least action] (1957)Google Scholar
  59. 59.
    Franksen O.I.: Group representations of finite polyvalent logic: a case study using APL notation. In: Niemi, A. (ed.) A Link Between Science and Applications Of Automatic Control, vol. 2., pp. 875–887. Pergamon, Oxford (1979)Google Scholar
  60. 60.
    Frege, F.L.G.: Review of a pamphlet by Cantor. In: Zeitschrift für Philosophie und philosophische Kritik, 100 pp. 269–272 [Repr. in Kleine Schriften (ed. I. Angelelli), Hildesheim: Olms, 1967, 163–166] (1892)Google Scholar
  61. 61.
    Gabriel G.: Definitionen und Interessen. Über die praktischen Grundlagen der Definitionslehre. Frommann-Holzboog, Stuttgart (1972)Google Scholar
  62. 62.
    Gabriel G.: Implizite Definitionen—eine Verwechslungsgeschichte. Ann. Sci. 5, 419–423 (1978)MathSciNetGoogle Scholar
  63. 63.
    Galton F.: Visualised numerals. J. Anthropol. Inst. G. B. Irel. 10, 85–102 (1881)Google Scholar
  64. 64.
    Gillies, D. (ed.): Revolutions in Mathematics. Clarendon Press, Oxford (1992)MATHGoogle Scholar
  65. 65.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte Math. Phys. 38, 173–198 [Many reprs. and transs] (1931)Google Scholar
  66. 66.
    Goethe N.B., Friend M.: Confronting ideals of proof with the ways of proving of the research mathematician. Stud. Log. 96, 277–292 (2010)MathSciNetGoogle Scholar
  67. 67.
    Gowers, T. (ed.): The Princeton Companion to Mathematics. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  68. 68.
    Grabiner J.: The Origins of Cauchy’s Rigorous Calculus. MIT Press, Cambridge (1981)MATHGoogle Scholar
  69. 69.
    Grassmann, H.: Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik, dargestellt und durch Anwendungen auf die übrigen Zweige der Mathematik, wie auch auf die Statik, Mechanik, die Lehre vom Magnetismus und die Krystallonomie, 1st edn. Otto Wigand, Leipzig [English trans.: A new branch of mathematics (trans. L. Kannenberg), Open Court, La Salle, 1995, 1–416] (1844)Google Scholar
  70. 70.
    Grassmann, R.: Die Logik. R. Grassmann, Stettin [Repr. 1900] (1890)Google Scholar
  71. 71.
    Grattan-Guinness, I. (ed.): From the Calculus to Set Theory 1630–1910. An Introductory History. Duckworth, London [Repr. Princeton University Press, Princeton, 2000] (1980)Google Scholar
  72. 72.
    Grattan-Guinness, I.: Convolutions in French Mathematics, 1800–1840. From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics, 3 vols. Birkhäuser, Basel; Deutscher Verlag Der Wissenschaften, Berlin (1990)Google Scholar
  73. 73.
    Grattan-Guinness, I.: Scientific revolutions as convolutions? A sceptical enquiry. In: Demidov, S.S., et al. (eds.) Amphora. Festschrift für Hans Wussing zu seinem 65, pp. 279–287. Birkhäuser, Basel [Repr. as [2009], ch. 8] (1992)Google Scholar
  74. 74.
    Grattan-Guinness, I.: Structure-similarity as a cornerstone of the philosophy of mathematics. In: Echeverria, J., et al. (eds.) The Space of Mathematics. Philosophical, Epistemological, and Historical Explorations, pp. 91–111. de Gruyter, Berlin [Repr. as [2010b], ch. 11] (1992)Google Scholar
  75. 75.
    Grattan-Guinness, I. (ed.): Companion Encyclopaedia of the History and Philosophy of the Mathematical Sciences, 2 vols. Routledge, London [Repr. Johns Hopkins University Press, Baltimore 2003] (1994)Google Scholar
  76. 76.
    Grattan-Guinness I.: Structural similarity or structuralism? Comments on Priest’s analysis of the paradoxes of self-reference. Mind, new ser. 107, 823–834 (1998)MathSciNetGoogle Scholar
  77. 77.
    Grattan-Guinness I.: Forms in algebras, and their interpretations: some historical and philosophical features. In: Albertazzi, L. (ed.) Shapes of Forms. From Gestalt Psychology and Phenomenology to Ontology and Mathematics, pp. 177–190. Kluwer, Dordrecht (1999)Google Scholar
  78. 78.
    Grattan-Guinness, I.: The Search for Mathematical Roots, 1870–1940. Logics, Set Theories and the Foundations Of Mathematics from Cantor Through Russell to Gödel. Princeton University Press, Princeton (2000)Google Scholar
  79. 79.
    Grattan-Guinness I.: A sideways look at Hilbert’s twenty-three problems of 1900. Notices Am. Math. Soc. 42, 752–757 (2000)MathSciNetGoogle Scholar
  80. 80.
    Grattan-Guinness I.: Re-interpreting “λ”: Kempe on multisets and Peirce on graphs, 1886–1905. Trans. C. S. Peirce Soc. 38, 327–350 (2002)MathSciNetGoogle Scholar
  81. 81.
    Grattan-Guinness I.: The mathematics of the past. Distinguishing its history from our heritage. Hist. Math. 31, 163–185 (2004) [Repr. as [2009], ch. 2]MATHMathSciNetGoogle Scholar
  82. 82.
    Grattan-Guinness I.: Karl Popper and the “problem of induction”: a fresh look at the logic of testing theories. Erkenntnis 60, 109–122 (2004) [Repr. as [2010b], ch. 4]MathSciNetGoogle Scholar
  83. 83.
    Grattan-Guinness I.: Solving Wigner’s mystery: the reasonable (though perhaps limited) effectiveness of mathematics in the natural sciences. Math. Intell. 30(3), 7–17 (2008) [Repr. as [2010b], ch. 12]MATHMathSciNetGoogle Scholar
  84. 84.
    Grattan-Guinness I.: Differential equations and linearity in the 19th and early 20th centuries. Arch. Int. Hist. Sci. 58, 343–351 (2008)Google Scholar
  85. 85.
    Grattan-Guinness I.: Routes of Learning Highways, Pathways and Byways in the History of Mathematics. Johns Hopkins University Press, Baltimore (2009)MATHGoogle Scholar
  86. 86.
    Grattan-Guinness I.: Discovering Robert Grassmann (1815–1901). In: Petsche, H.-J. (ed.) Grassmann conference proceedings, pp. 19–35. Birkhäuser, Basel (2010)Google Scholar
  87. 87.
    Grattan-Guinness I.: Corroborations and Criticisms: Forays with the Philosophy of Karl Popper. College Publications, London (2010)MATHGoogle Scholar
  88. 88.
    Grattan-Guinness, I.: How influential was mechanics in the development of neo-classical economics? A small example of a large question. J. Hist. Econ. Thought (to appear) (2011)Google Scholar
  89. 89.
    Grattan-Guinness, I.: Numbers as moments of multisets. A new-old formulation of arithmetic. Math. Intell. (to appear) (2011)Google Scholar
  90. 90.
    Grattan-Guinness, I.: D Company: the rise and fall of differential operator theory in Britain, 1810s–1870s. Arch. Int. Hist. Sci. (to appear) (2011)Google Scholar
  91. 91.
    Grattan-Guinness, I.: Was Hugh MacColl a logical pluralist or a logical monist? A case study in the slow emergence of metatheorising. Fundam. Sci. (to appear) (2011)Google Scholar
  92. 92.
    Grattan-Guinness, I.: The reception of Gödel’s 1931 incompletability theorems by mathematicians, and some logicians, up to the early 1960s. In: Scott, D., et al. (eds.) Horizons of Truth. Proceedings of the Kurt Gödel International Centenary Conference in Vienna 2006. Cambridge University Press, New York (to appear) (2011)Google Scholar
  93. 93.
    Grattan-Guinness, I.: Unknotting the Nots and Exposing Proof Gaps: on the Liar and Cretans Paradoxes, and Proof by Contradiction (to appear) (2011)Google Scholar
  94. 94.
    Gray, J.J., Parshall, K.H. (eds.): Episodes in the history of modern algebra (1800–1950). American Mathematical Society, Providence (2007)Google Scholar
  95. 95.
    Grinstein, L.S., Lipsey, S.I. (eds): Encyclopedia of Mathematics Education. RoutledgeFalmer, New York (2001)Google Scholar
  96. 96.
    Haaparanta, L. (ed.): The Development of Modern Logic. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  97. 97.
    Haas A.E.: Die Entwicklungsgeschichte des Satzes von der Erhaltung der Kraft. Hölder, Vienna (1909)MATHGoogle Scholar
  98. 98.
    Hailperin, T.: Boole’s Logic and Probability, 1st edn. North-Holland, Amsterdam [2nd edn. 1986] (1976)Google Scholar
  99. 99.
    Hartimo M.: Mathematical roots of phenomenology: Husserl and the concept of number. Hist. Philos. Log. 27, 319–337 (2006)MATHMathSciNetGoogle Scholar
  100. 100.
    Hausdorff F.: Review of [Russell 1903]. Vierteljahrschrift für Wissenschaft und Soziologie 29, 199–124 (1905)Google Scholar
  101. 101.
    Hausdorff, F.: Grundzüge der Mengenlehre. de Gruyter, Leipzig [Repr. Chelsea, New York, 1949] (1914)Google Scholar
  102. 102.
    Hawkins T.W.: Lebesgue’s Theory of Integration. University of Wisconsin Press, Madison (1970)MATHGoogle Scholar
  103. 103.
    Hesseling D.: Gnomes in the Fog. The Reception of Brouwer’s Intuitionism in the 1920s. Birkhauser, Basel (2003)MATHGoogle Scholar
  104. 104.
    Hilbert D.: Mathematische Probleme. Arch. Math. Phys. 31, 44–63, 213–237 [Many reprs. and transs] (1901)Google Scholar
  105. 105.
    Hilbert, D.: In: Hallett, M., Majer, U. (eds.) David Hilbert’s Lectures on the Foundations of Mathematics and Physics, 1891–1933. Springer, Berlin (2004)Google Scholar
  106. 106.
    Hodges, W.: Set theory, model theory, and computability theory. In: [Haaparanta 2009], 471–498 (2009)Google Scholar
  107. 107.
    Horty J.F.: Frege on Definitions: a Case Study of Semantic Content. Oxford University Press, Oxford (2007)Google Scholar
  108. 108.
    Houser N.: Peirce and the law of distribution. In: Drucker, T. (ed.) Perspectives on the History of Mathematical Logic., pp. 10–32. Birkhäuser, Boston (1991)Google Scholar
  109. 109.
    Hund J.: A case of affirming the consequent in international law: UN Security Council Resolution 232 (1966)—Southern Rhodesia. Hist. Philos. Log. 15, 201–210 (1994)MathSciNetGoogle Scholar
  110. 110.
    Husserl, E.: Logische Untersuchungen, vol. 2, 1st edn., Halle: Niemeyer [English trans. of 2nd ed.: Logical investigations (trans. J. N. Findlay), vol. 2, London: Routledge and Kegan Paul, 1970]Google Scholar
  111. 111.
    Husserl, E.: Early writings on the philosophy of logic and mathematics (trans. and ed. D. Willard), Dordrecht: Kluwer. [Collected works, vol. 5: originally published in German] (1994)Google Scholar
  112. 112.
    Husserl, E.: Philosophy of arithmetic. Psychological and logical investigations, with supplementary texts from 1887–1901 (trans. and ed. D. Willard), Dordrecht: Kluwer. [Collected works, vol. 10: originally published in German] (2003)Google Scholar
  113. 113.
    Israel G., Millán Gasca A.: The world as a mathematical game. John von Neumann and twentieth century science. Birkhäuser, Basel (2009)MATHGoogle Scholar
  114. 114.
    Jahnke, N.H. (ed.): A History of Analysis. American Mathematical Society, Providence (2003)MATHGoogle Scholar
  115. 115.
    James, W.: A Pluralistic Universe. Longmans, Green, London [Cited from ed. by Rockland, MD; ArcManor, 2008] (1909)Google Scholar
  116. 116.
    Johnson D.M.: The problem of the invariance of dimension in the growth of modern topology. pt. 2. Arch. Hist. Exact Sci. 25, 85–267 (1981)MATHGoogle Scholar
  117. 117.
    Kaplan R.: The Nothing That is. A Natural History of Zero. Allen Lane The Penguin Press, London (1999)MATHGoogle Scholar
  118. 118.
    Kaushal R.S.: Structural Analogies in Understanding Nature. namaya, New Delhi (2003)Google Scholar
  119. 119.
    Keats, J.: In: Rollins, H. E. (ed.) The Letters of John Keats, 1814–1821, 2 vols. Harvard University Press, Cambridge (1958)Google Scholar
  120. 120.
    Kempe A.B.: A memoir on the theory of mathematical form. Philos. Trans. R. Soc. Lond. 177, 1–70 (1886)Google Scholar
  121. 121.
    Kleene, S.C.: Introduction to Metamathematics. North Holland, Amsterdam; Noordhoff, Groningen (1952)Google Scholar
  122. 122.
    Klein, F.: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, vol. 1. Springer, Berlin [Repr. Chelsea, New York, 1950] (1926)Google Scholar
  123. 123.
    Klein J.: Greek Mathematical Thought and the Origins of Algebra. The MIT Press, Cambridge (1968)Google Scholar
  124. 124.
    Klein J.L.: Statistical Visions in Time: a History of Time Series Analysis, 1662–1938. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  125. 125.
    Krantz S.G.: How to Teach Mathematics: a Personal Perspective, 2nd edn. American Mathematical Society, Providence (1999)Google Scholar
  126. 126.
    Krömer R.: Tool and Object: a History and Philosophy of Category Theory. Birkhäuser, Basel (2007)MATHGoogle Scholar
  127. 127.
    Lindt R.: Das Prinzip der virtuellen Geschwindigkeiten. Seine Beweise und die Unmöglichkeit seiner Umkehrung bei Verwendung des Begriffes “Gleichgewicht eines Massensystems”. Abhandlungen zur Geschichte der Mathematik 18, 145–195 (1904)Google Scholar
  128. 128.
    Löwe, B., Müller, T. (eds): PhiMSAMP. Sociological Aspects and Mathematical Practice. College Publications, Philosophy of Mathematics (2010)MATHGoogle Scholar
  129. 129.
    Lützen J.: Heaviside’s operational calculus and the attempts to rigorise it. Arch. Hist. Exact Sci. 21, 161–200 (1979)MATHMathSciNetGoogle Scholar
  130. 130.
    Lützen J.: Mechanistic Images in Geometric Form. Heinrich Hertz’s Principles of Mechanics. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  131. 131.
    Mac Lane, S.: Categories for the Working Mathematician, 1st edn. Springer, Berlin [2nd edn. 1998] (1971)Google Scholar
  132. 132.
    Mac Lane S.: Mathematics, Form and Function. Springer, Berlin (1986)Google Scholar
  133. 133.
    Maddux R.: The Origin of Relation Algebras in the Development and Axiomatization of the Calculus of Relations. Stud. Log. 50, 421–455 (1991)MATHMathSciNetGoogle Scholar
  134. 134.
    Mancosu P.: Aristotelean logic and Euclidean mathematics: seventeenth- century developments of the quaestio de certitudine mathematicarum. Stud. Hist Philos. Sci. 23, 242–265 (1992)MathSciNetGoogle Scholar
  135. 135.
    Mancosu, P. (ed.): From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  136. 136.
    Mancosu, P. (ed.): The Philosophy of Mathematical Practice. Oxford University Press, Oxford (2008)MATHGoogle Scholar
  137. 137.
    Mandelbrot B.B.: Fractals. Form, Chance, and Dimension. W. H. Freeman, San Francisco (1977)MATHGoogle Scholar
  138. 138.
    Magnello M.E.: Karl Pearson’s Mathematisation of Inheritance: From Galton’s Ancestral Heredity to Mendelian Genetics. Ann. Sci. 55, 35–94 (1998)MATHMathSciNetGoogle Scholar
  139. 139.
    Mangione C., Bozzi S.: Storia della logica da Boole ai nostri giorni. Garzanti, Milan (1993)Google Scholar
  140. 140.
    Martinez A.: Kinematics. Johns Hopkins University Press, Baltimore (2009)MATHGoogle Scholar
  141. 141.
    Mawhin, J.: The centennial celebration of Poincaré and Lyapunov in ordinary differential equations. Rendiconti del Circolo Matematico di Palermo 34(2), Suppl., 9–46 (1994)Google Scholar
  142. 142.
    McArthur, C.W.: Operations Analysis in the U.S. Army Eighth Air Force in World War II. American Mathematical Society and London Mathematical Society, Providence (1990)Google Scholar
  143. 143.
    Medvedev F.A.: Scenes from the History of Real Functions. Birkhäuser, Basel (1991)MATHGoogle Scholar
  144. 144.
    Mizraji E.: Vector logics: The matrix–vector representation of logical calculus. Fuzzy Sets Syst. 50, 179–185 (1992)MathSciNetGoogle Scholar
  145. 145.
    Moore G.H.: Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory. Hist. Philos. Log. 1, 95–137 (1980)Google Scholar
  146. 146.
    Moore G.H.: Zermelo’s Axiom of Choice. Springer, New York (1982)MATHGoogle Scholar
  147. 147.
    More T.: Axioms and theorems for a theory of arrays. IBM J. Res. Develop. 17, 135–175 (1973)MATHMathSciNetGoogle Scholar
  148. 148.
    Morgan M.S.: The History of Econometric Ideas. Cambridge University Press, Cambridge (1990)MATHGoogle Scholar
  149. 149.
    Nagel, E.: The foundations of modern conceptions of formal logic in the development of geometry. Osiris 7, 142–224 [Repr. in Teleology revisited, New York: Columbia University Press, 1979, 195–259, 328–339] (1939)Google Scholar
  150. 150.
    Netz R.: The shaping of Deduction in Greek Mathematics: a Study in Cognitive History. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  151. 151.
    Neugebauer O.: On the planetary theory of Copernicus. Vistas Astron. 10, 89–103 (1968)MathSciNetGoogle Scholar
  152. 152.
    Noll W.: The foundations of Mechanics and Thermodynamics. Selected papers. Springer, New York (1974)MATHGoogle Scholar
  153. 153.
    Osgood, W.F.: Allgemeine Theorie der analytischen Funkionen a) einer und b) mehrerer complexen Grössen. In: Encyklopädie der mathematischen Wissenschaften, vol. 2, pt. 2, pp. 1–114 (article IIB1) [See also the later articles in this part for several specific topics] (1901)Google Scholar
  154. 154.
    Otte M., Panza M. (eds) (1997). Analysis and Synthesis in Mathematics History and Philosophy. Kluwer: DordrechtGoogle Scholar
  155. 155.
    Panteki, M.: Relationships between algebra, differential equations and logic in England: 1800–1860. C. N. A. A. (London) doctoral dissertation. Available at http://hmalgebra.web.auth.gr/marias_thesis.pdf (1992)
  156. 156.
    Peano, G.: Arithmetices principia, novo methodo exposita. Bocca, Turin [Repr. in Opere scelte, vol 2, Rome: Cremonese, 1958, 20–55] (1889)Google Scholar
  157. 157.
    Peckhaus V.: Ernst Schröder und die “Pasigraphischen Systeme” von Peano und Peirce. Mod. Log. 1, 174–205 (1991)MATHMathSciNetGoogle Scholar
  158. 158.
    Peckhaus V.: Ernst Schröder und der Logizismus. In: Stelzner W. (ed.) Philosophie und Logik. Frege-Kolloquien Jena 1989/1991. de Gruyter, Berlin pp. 108–119 (1993)Google Scholar
  159. 159.
    Peckhaus V.: Wozu Algebra der Logik? Ernst Schröders Suche nach einer universalen Theorie der Verknüpfungen. Mod. Log. 4, 357–381 (1994)MATHMathSciNetGoogle Scholar
  160. 160.
    Persson A.: The Coriolis effect: 400 years of conflict between common sense and mathematics. Hist. Meteorol. 2, 1–24 (2005)Google Scholar
  161. 161.
    Pieri, M.: In: Marchisotto, E.A., Smith, J.T. (eds.) The Legacy of Mario Pieri in Geometry and Arithmetic. Birkhäuser, Boston (2007)Google Scholar
  162. 162.
    Poinsot, L.: Elémens de statique, 1st edn. Calixte, Paris [Several later eds] (1803)Google Scholar
  163. 163.
    Popper, K.R.: Autobiography of Karl Popper. In: Schilpp P.A. (ed.) The Philosophy of Karl Popper, pp. 1–181. Open Court, La Salle [Repr. as Unended quest, Fontana, London, 1976] (1974)Google Scholar
  164. 164.
    Priest G.: The structure of the paradoxes of self-reference. Mind, new ser. 103, 27–34 (1994)Google Scholar
  165. 165.
    Priest G.: Beyond the Limits of Thought. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  166. 166.
    Priest G.: The import of inclosure. Mind, new ser. 107, 835–840 (1998)MathSciNetGoogle Scholar
  167. 167.
    Primeiro G.: Proceeding in abstraction: from concepts to types and the recent perspective on information. Hist. Philos. Log. 30, 257–282 (2009)Google Scholar
  168. 168.
    Pringsheim, A.: Irrationalzahlen und Konvergenz unendlicher Prozesse. In: Encyclopädie der mathematischen Wissenschaften, vol. 1, part 1, pp. 47–146. Teubner, Leipzig (article IA3) (1898)Google Scholar
  169. 169.
    Pringsheim A.: Zur Geschichte des Taylorschen Lehrsatzes. Bibliotheca Math. 1(3), 433–479 (1900)MathSciNetGoogle Scholar
  170. 170.
    Pulte H.: Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationalen Mechanik. Steiner, Stuttgart (1989)MATHGoogle Scholar
  171. 171.
    Quine W.V.: Philosophy of Logic, 2nd edn. Prentice-Hall, Englefield Cliffs (1986)Google Scholar
  172. 172.
    Rado R.: The cardinal module and some theorems on families of sets. Annali di Matematica Pura ed Applicata 102(4), 135–154 (1975)MATHMathSciNetGoogle Scholar
  173. 173.
    Rado R.: Families of sets. In: James, R.D. (ed.) Proceedings of the International Congress of Mathematicians, Vancouver 1974, vol. 2., pp. 491–496. Canadian Mathematical Congress, Vancouver (1975)Google Scholar
  174. 174.
    Rima, I.H. (ed.): Measurement, Quantification and Economic Analysis. Numeracy in Economics. Routledge, London (1995)Google Scholar
  175. 175.
    Robinson R.G.F.: Definition. Clarendon Press, Oxford (1950)Google Scholar
  176. 176.
    Rodriguez-Consuegra F.A.: The Mathematical Philosophy of Bertrand Russell: Origins and Development. Birkhäuser, Basel (1991)MATHGoogle Scholar
  177. 177.
    Rotman B.: Signifying Nothing: the Semiotics of Zero. MacMillan, London (1987)Google Scholar
  178. 178.
    Rougier, L.P.A.: Le philosophie géométrique de Henri Poincaré. Alcan, Paris (1920)Google Scholar
  179. 179.
    Rubin H., Rubin J.: Equivalents of the Axiom of Choice, 2nd edn. North-Holland, Amsterdam (1985)MATHGoogle Scholar
  180. 180.
    Russell, B.A.W.: The Principles of Mathematics. Cambridge University Press, Cambridge [Repr. London: Allen and Unwin, 1937 with new intro] (1903)Google Scholar
  181. 181.
    Russell, B.A.W.: Introduction. In: Wittgenstein, L. (ed.) Tractatus logico-philosophicus, pp. 7–23. Allen and Unwin, London [Repr. in 1961 ed., ix-xxii (cited here); and in Collected papers, vol. 9, Routledge, London, 1988, 96–112] (1922)Google Scholar
  182. 182.
    Russell B.A.W.: My Philosophical Development. Allen and Unwin, London (1959)Google Scholar
  183. 183.
    Sagüillo J.M.: Methodological practice and complementary concepts of logical consequence: Tarski’s model-theoretic consequence and Corcoran’s information-theoretic consequence. Hist. Philos. Log. 30, 49–68 (2009)Google Scholar
  184. 184.
    Scanlan M.J.: Who were the American postulate theorists?. J. Symb. Log. 56, 981–1002 (1991)MATHMathSciNetGoogle Scholar
  185. 185.
    Scholz, E. (ed.): Geschichte der Algebra. Eine Aufführung. Wissenschaftsverlag, Mannheim (1990)MATHGoogle Scholar
  186. 186.
    Schröder, F.W.K.E.: Vorlesungen über die Algebra der Logik (exakte Logik), 3 vols. Teubner, Leipzig (1890–1905)Google Scholar
  187. 187.
    Scott, W.L.: The Conflict Between Atomism and Conservation Theory 1644 to 1860. Elsevier, New York; MacDonald, London (1970)Google Scholar
  188. 188.
    Shapiro S.: The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  189. 189.
    Shapiro S.: We hold these truths to be self-evident: but what do we mean by that? Rev. Symb. Log. 2, 175–207 (2009)MATHGoogle Scholar
  190. 190.
    Sheffer, H.M.: Review of Principia mathematica, 2nd edn., vol. 1, Isis, 8, 226–231 (1926)Google Scholar
  191. 191.
    Shin S.-J.: The Logical Status of Diagrams. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  192. 192.
    Shosky J.: Russell’s use of truth tables. Russell, new ser. 17, 11–26 (1997)Google Scholar
  193. 193.
    Siegmund-Schultze R.: Die Anfänge der Functionalanalysis. Arch. Hist. Exact Sci. 26, 13–71 (1982)MATHMathSciNetGoogle Scholar
  194. 194.
    Siegmund-Schultze R.: Eliakim Hastings Moore’s “General Analysis”. Arch. Hist. Exact Sci. 52, 51–89 (1998)MATHMathSciNetGoogle Scholar
  195. 195.
    Sinaceur H.: Corps et modèles. Vrin, Paris (1991)Google Scholar
  196. 196.
    Smith, B. (ed.): Parts and Moments. Studies in Logic and Formal Ontology. Philosophia, Munich (1982)MATHGoogle Scholar
  197. 197.
    Smithies F.: Cauchy and the Creation of Complex Function Theory. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  198. 198.
    Stump D.: Reconstructing the unity of mathematics circa 1900. Perspect. Sci. 5, 383–417 (1997)MathSciNetGoogle Scholar
  199. 199.
    Tarski, A.: Der Wahrheitsbegriff in den formalisirten Sprachen. Stud. Philos. 1, 261–405 [Several reprs. and transs] (1936)Google Scholar
  200. 200.
    Torretti R.: Philosophy of Geometry from Riemann to Poincaré. Reidel, Dordrecht (1978)MATHGoogle Scholar
  201. 201.
    Truesdell C.: Essays in the History of Mechanics. Springer, Berlin (1968)MATHGoogle Scholar
  202. 202.
    Tucciarone J.: The development of the theory of summable divergent series from 1880 to 1925. Arch. Hist. Exact Sci. 10, 1–40 (1973)MATHMathSciNetGoogle Scholar
  203. 203.
    van Dalen D.: The war of the frogs and the mice, or the crisis of Mathematische Annalen. Math. Intell. 12(4), 17–31 (1990)MATHGoogle Scholar
  204. 204.
    van Heijenoort, J. (ed.): From Frege to Gödel. A Source Book in Mathematical Logic. Harvard University Press, Cambridge (1967)Google Scholar
  205. 205.
    Vercelloni L.: Filosofia delle strutture. La Nuova Italia, Florence (1989)Google Scholar
  206. 206.
    Voss A.: Über die mathematische Erkenntnis. Teubner, Leipzig (1914)Google Scholar
  207. 207.
    Wagner-Döbler, R., Berg, J.: Mathematische Logik von 1847 bis zur Gegenwart. Eine bibliometrische Untersuchung. de Gruyter, Berlin (1993)Google Scholar
  208. 208.
    Walker D.A.: Walrasian Economics. Cambridge University Press, Cambridge (2006)Google Scholar
  209. 209.
    Walsh A.: Differentiation and infinitesimal relatives in Peirce’s 1870 paper on logic: a new interpretation. Hist. Philos. Log. 18, 61–78 (1997)MATHGoogle Scholar
  210. 210.
    Weintraub E.R.: Stabilizing Dynamics. Constructing Economic Knowledge. Cambridge University Press, Cambridge (1991)Google Scholar
  211. 211.
    Weintraub, E.R. (ed.): Toward a history of game theory, as History of political economy, 24, Suppl (1992)Google Scholar
  212. 212.
    Whitehead, A.N.: A Treatise on Universal Algebra with Applications. Cambridge University Press, Cambridge; MacMillan, New York [Repr. New York: Hafner, 1960] (1898)Google Scholar
  213. 213.
    Whitehead, A.N., Russell, B.A.W.: Principia mathematica, 3 vols., 1st edn. Cambridge University Press, Cambridge [2nd ed. 1925–1927] (1910–1913)Google Scholar
  214. 214.
    Whittaker E.T.: History of the theories of aether and electricity. The classical theories. Nelson, London (1951)MATHGoogle Scholar
  215. 215.
    Wussing, H.: The Genesis of the Abstract Group Concept. The MIT Press, Cambridge [German original 1969] (1984)Google Scholar
  216. 216.
    Wussing, H.: 6000 Jahre Mathematik. Eine kulturgeschichtliche Zeitreise, 2 vols. Springer, Berlin (2008, 2009)Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  1. 1.Middlesex University Business SchoolThe BurroughsHendon, LondonUK
  2. 2.Centre for Philosophy of Natural and Social ScienceLondon School of EconomicsLondonUK

Personalised recommendations