Logica Universalis

, Volume 4, Issue 2, pp 207–223 | Cite as

Logic and Natural Selection

  • Jaroslav Peregrin


Is logic, feasibly, a product of natural selection? In this paper we treat this question as dependent upon the prior question of where logic is founded. After excluding other possibilities, we conclude that logic resides in our language, in the shape of inferential rules governing the logical vocabulary of the language. This means that knowledge of (the laws of) logic is inseparable from the possession of the logical constants they govern. In this sense, logic may be seen as a product of natural selection: the emergence of logic requires the development of creatures who can wield structured languages of a specific complexity, and who are capable of putting the languages to use within specific discursive practices.

Mathematics Subject Classification (2010)



Logic natural selection modus ponens inferentialism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Béziau, J.-Y. (eds): Logica Universalis. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  2. 2.
    Boghossian P.: Knowledge of logic. In: Boghossian, P., Peacocke, C. (eds) New Essays on the A Priori., pp. 229–254. Clarendon Press, Oxford (2000)CrossRefGoogle Scholar
  3. 3.
    Brandom, B.: How Analytic Philosophy has Failed Cognitive Science. In Brandom: Reason in Philosophy. Harvard University Press, Cambridge (2009)Google Scholar
  4. 4.
    Cohn P.M.: Universal Algebra. Reidel, Dordrecht (1981)zbMATHGoogle Scholar
  5. 5.
    Cook R.T.: What’s wrong with tonk(?). J. Philos. Logic 34, 217–226 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davidson, D.: On the very idea of a conceptual scheme. In: Proceedings and Addresses of the American Philosophical Association, vol. 47 (1974) [Reprinted in Davidson: Inquiries into Truth and Interpretation, pp. 183–198. Clarendon Press, Oxford (1984)]Google Scholar
  7. 7.
    Fodor J.A.: The Language of Thought. Cromwell, New York (1975)Google Scholar
  8. 8.
    Grätzer G.: Universal Algebra. Springer, Berlin (1979)zbMATHGoogle Scholar
  9. 9.
    Hanna R.: Rationality and Logic. MIT Press, Cambridge (2006)Google Scholar
  10. 10.
    Horwich P.: Stipulation, meaning and apriority. In: Boghossian, P., Peacocke, C. (eds) New Essays on the A Priori, pp. 150–170. Clarendon Press, Oxford (2000)CrossRefGoogle Scholar
  11. 11.
    Kleene S.C.: Mathematical Logic. Wiley, New York (1967)zbMATHGoogle Scholar
  12. 12.
    Koslow A.: A Structuralist Theory of Logic. Cambridge University Press, Cambridge (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    McGee V.: A counterexample to modus ponens. J. Philos. 82, 462–471 (1985)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Peregrin J.: The ‘Natural’ and the ‘Formal’. J. Philos. Logic 29, 75–101 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Peregrin J.: Developing Sellars’ semantic legacy: meaning as a role. In: Wolf, P., Lance, M.N. (eds) The Self-Correcting Enterprise, pp. 257–274. Rodopi, Amsterdam (2006)Google Scholar
  16. 16.
    Peregrin, J.: Consequence and inference. In: Kolman, V. (ed.) Miscellanea Logica: Truth and Proof, pp. 1–18. Philosophical Faculty of the Charles University, Prague (2006).
  17. 17.
    Peregrin J.: Logical Rules and the a priori: good and bad questions. In: Béziau, J.-Y., Costa-Leite, A. (eds) Perspectives on Universal Logic, pp. 111–122. Polimetrica, Italy (2007)Google Scholar
  18. 18.
    Peregrin, J.: Semantics without meaning? In: Schantz, R. (ed.) Prospects of meaning. de Gruyter, Berlin (2010, to appear)Google Scholar
  19. 19.
    Prior, A.N.: Runabout inference ticket. Analysis 21, 38–39 (1960/1961)Google Scholar
  20. 20.
    Pritchard, D. B.: The Encyclopedia of Chess Variants. Games and Puzzles Publications, Surrey (1994)Google Scholar
  21. 21.
    Schechter J., Enoch D.: Meaning and justification: the case of modus ponens. Noûs 40, 687–715 (2006)CrossRefGoogle Scholar
  22. 22.
    Sellars, W.: The myth of the given: three lectures on empiricism and the philosophy of mind. In: Feigl, H., Scriven, M. (eds.) The Foundations of Science and the Concepts of Psychology and Psychoanalysis (Minnesota Studies in the Philosophy of Science 1), pp. 253–329, University of Minnesota Press, Minneapolis (1956)Google Scholar
  23. 23.
    Sellars, W.: In the space of reasons: selected essays. In: Scharp K., Brandom, R. (eds.) Harvard University Press, Cambridge (2007)Google Scholar
  24. 24.
    Wansing H.: Connectives stronger than tonk. J. Philos Logic 35, 653–660 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wittgenstein, L.: Bemerkungen über die Grundlagen der Mathematik. Blackwell, Oxford (1956) [English translation Remarks on the Foundations of Mathematics, Blackwell, Oxford (1956)]Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Institute of Philosophy, Academy of Sciences of the Czech RepublicPrague 1Czech Republic
  2. 2.Faculty of PhilosophyUniversity of Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations