Skip to main content
Log in

Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The lattice Boltzmann method (LBM) is a potential numerical tool for solving challenging fluid problems. The Bhatnagar Gross Krook (BGK) approximation is incorporated in the extensively used LBM-BGK approach. In the hyperbolic lattice Boltzmann method (HLBM), a hyperbolic collision operator is used for the collision process, whereas the essential objective of multiple relaxation time (MRT) collision operators is to manage the relaxation of different moments independently to boost accuracy and stability. In this paper, to solve the solid–liquid phase change problem, the HLBM and MRT discrete Boltzmann method are coupled with the enthalpy method to observe the phase change phenomenon governed by the heat conduction phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. John, D.: The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology (2009). https://doi.org/10.1007/978-1-4020-9340-1

  2. Yadroitsev, I., Smurov, I.: Selective laser melting technology: from the single laser melted track stability to 3d parts of complex shape. Physics Procedia 5, 551–560 (2010). Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 2

  3. Voller, V.R., Swaminathan, C., Thomas, B.G.: Fixed grid techniques for phase change problems: a review. Int. J. Numer. Methods Eng. 30(4), 875–898 (1990)

    Article  MATH  Google Scholar 

  4. Shamsundar, N., Sparrow, E.: Analysis of multidimensional conduction phase change via the enthalpy model. J. Heat Transf. 97(3), 333–340 (1975). https://doi.org/10.1115/1.3450375

    Article  Google Scholar 

  5. Bonacina, C., Comini, G., Fasano, A., Primicerio, M.: Numerical solution of phase-change problems. Int. J. Heat Mass Transf. 16(10), 1825–1832 (1973)

    Article  Google Scholar 

  6. Jiaung, W.-S., Kuo, C.-P., Ho, J.-R.: Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transf. Part B Fundam. 39(2), 167–187 (2001). https://doi.org/10.1080/10407790150503495

    Article  Google Scholar 

  7. Huang, R., Wu, H., Cheng, P.: A new lattice Boltzmann model for solid–liquid phase change. Int. J. Heat Mass Transf. 59, 295–301 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.027

    Article  Google Scholar 

  8. Ibrahem, A.: Lattice Boltzmann technique for heat transport phenomena coupled with melting process. Heat Mass Transf. 52, 213–221 (2017). https://doi.org/10.1007/s00231-016-1811-8

    Article  Google Scholar 

  9. Chatterjee, D.: Lattice Boltzmann Modeling for Melting/Solidification Processes (2011). https://doi.org/10.5772/28236

  10. Gan, Y., Xu, A., Zhang, G., Succi, S.: Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects. Soft Matter 11, 5336–5345 (2015). https://doi.org/10.1039/C5SM01125F

    Article  Google Scholar 

  11. Zhang, Y., Xu, A., Qiu, J., Wei, H., Wei, Z.-H.: Kinetic modeling of multiphase flow based on simplified Enskog equation (2020)

  12. Lin, C., Luo, K.H.: MRT discrete Boltzmann method for compressible exothermic reactive flows. Comput. Fluids 166, 176–183 (2018). https://doi.org/10.1016/j.compfluid.2018.02.012

    Article  MathSciNet  MATH  Google Scholar 

  13. Kruger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method—Principles and Practice. Springer, London (2017)

    Book  MATH  Google Scholar 

  14. Mohamad, A.A.: The Boltzmann Equation, pp. 25–39. Springer, London (2019). https://doi.org/10.1007/978-1-4471-7423-3_2

    Book  Google Scholar 

  15. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  16. Vernotte, P.: Sur quelques complications possibles dans les phenomenes de conduction de la chaleur. Compte Rendus 252, 2190–2191 (1961)

    MathSciNet  Google Scholar 

  17. Liu, Y., Li, L., Lou, Q.: A hyperbolic lattice Boltzmann method for simulating non-Fourier heat conduction. Int. J. Heat Mass Transf. 131, 772–780 (2019)

    Article  Google Scholar 

  18. Liu, Y., Li, L.: Lattice Boltzmann simulation of non-Fourier heat conduction with phase change. Numer. Heat Transf. Part A Appl. 76(1), 19–31 (2019). https://doi.org/10.1080/10407782.2019.1612155

    Article  Google Scholar 

  19. Chai, Z., Shi, B., Guo, Z.: A multiple-relaxation-time lattice Boltzmann model for general nonlinear anisotropic convection-diffusion equations. J. Sci. Comput. 69(1), 355–390 (2016). https://doi.org/10.1007/s10915-016-0198-5

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y.-D., Xu, A.-G., Zhang, G.-C., Chen, Z.-H.: A one-dimensional discrete Boltzmann model for detonation and an abnormal detonation phenomenon. Commun. Theor. Phys. 71(1), 117 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, Y., Hong, N., Shi, B., Chai, Z.: Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme for one-dimensional diffusion equations. Phys. Rev. E 104, 015312 (2021). https://doi.org/10.1103/PhysRevE.104.015312

    Article  MathSciNet  Google Scholar 

  22. Ozisik, M.N.: Heat Conduction, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  23. Watari, M., Tsutahara, M.: Supersonic flow simulations by a three-dimensional multispeed thermal model of the finite difference lattice boltzmann method. Physica A 364, 129–144 (2006). https://doi.org/10.1016/j.physa.2005.06.103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehil Srivastava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Mariappan, P. Hyperbolic Lattice Boltzmann Method and Discrete Boltzmann Method for Solid–Liquid Phase Change Problem. Math.Comput.Sci. 17, 9 (2023). https://doi.org/10.1007/s11786-023-00563-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-023-00563-w

Keywords

Mathematics Subject Classification

Navigation