Skip to main content
Log in

On the \({ H}^{1}\) Conforming Virtual Element Method for Time Dependent Stokes Equation

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In this paper, we present a virtual element method for the time-dependent Stokes equation by employing a mixed formulation involving the velocity and the pressure as primitive variables. The velocity is approximated using the \(H^1\) conforming virtual element and the pressure is approximated by the discontinuous piecewise polynomial. In order to approximate the non-stationary part with optimal order of convergence, we need to compute the \(L^2\) projection operator of the full order k. In view of this requirement, we modify the velocity space keeping the same dimension. The virtual space is discrete inf-sup stable for \(k \ge 2\) and non-divergence free. We estimate the optimal order of convergence for the velocity and the pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 35(1), 222–245 (2019)

    Article  MathSciNet  Google Scholar 

  2. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)

    Article  MathSciNet  Google Scholar 

  3. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  Google Scholar 

  4. Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bathe, K.: The inf-sup condition and its evaluation for mixed finite element methods. Comput. Struct. 79, 243–252 (2001)

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L., Russo, A.: Basic principles of virtual element methods. Math. Model Methods Appl. Sci. 23(01), 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L., Russo, A.: Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Model Methods Appl. Sci. 26(04), 729–750 (2016)

    Article  MathSciNet  Google Scholar 

  8. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  9. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    Article  MathSciNet  Google Scholar 

  10. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. 51(2), 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  11. Benedetto, M.F., Berrone, S., Borio, A., Pieraccini, S., Scialò, S.: Order preserving SUPG stabilization for the virtual element formulation of advection–diffusion problems. Comput. Methods Appl. Mech. Eng. 311, 18–40 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    Article  MathSciNet  Google Scholar 

  13. Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed finite element methods and applications, vol. 44. Springer, Berlin (2013)

    Book  Google Scholar 

  14. Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer, Berlin (2007)

    Google Scholar 

  15. Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Rogé, G.: A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96(1), 117–129 (1992)

    Article  MathSciNet  Google Scholar 

  16. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    Article  MathSciNet  Google Scholar 

  17. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient solutions of elliptic systems, pp. 11–19. Springer, Berlin (1984)

    Chapter  Google Scholar 

  18. Brooks, A.N., Hughes, T.J.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  19. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)

    Article  MathSciNet  Google Scholar 

  20. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Douglas, J., Wang, J.P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)

    Article  MathSciNet  Google Scholar 

  22. Franca, L.P., Hughes, T.J.: Convergence analyses of Galerkin least-squares methods for symmetric advective–diffusive forms of the stokes and incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 105(2), 285–298 (1993)

    Article  MathSciNet  Google Scholar 

  23. He, Y., Sun, W.: Stabilized finite element method based on the Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76(257), 115–136 (2007)

    Article  MathSciNet  Google Scholar 

  24. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19(2), 275–311 (1982)

    Article  MathSciNet  Google Scholar 

  25. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier–Stokes problem III. Smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal. 25(3), 489–512 (1988)

    Article  MathSciNet  Google Scholar 

  26. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  27. Li, J., He, Y.: A stabilized finite element method based on two local gauss integrations for the Stokes equations. J. Comput. Appl. Math. 214(1), 58–65 (2008)

    Article  MathSciNet  Google Scholar 

  28. Li, J., He, Y., Chen, Z.: A new stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197(1), 22–35 (2007)

    Article  MathSciNet  Google Scholar 

  29. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  MathSciNet  Google Scholar 

  30. Shang, Y.: New stabilized finite element method for time-dependent incompressible flow problems. Int. J. Numer. Methods Fluids 62(2), 166–187 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Taylor, C., Hood, P.: A numerical solution of the Navier–Stokes equations using the finite element technique. Comput Fluids 1, 73–100 (1973)

    Article  MathSciNet  Google Scholar 

  32. Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74, 882–898 (2017)

    Article  MathSciNet  Google Scholar 

  33. Vacca, G.: An \(H^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28(01), 159–194 (2018)

    Article  MathSciNet  Google Scholar 

  34. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundararajan Natarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adak, D., Natarajan, S. On the \({ H}^{1}\) Conforming Virtual Element Method for Time Dependent Stokes Equation. Math.Comput.Sci. 15, 135–154 (2021). https://doi.org/10.1007/s11786-020-00473-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-020-00473-1

Keywords

Mathematics Subject Classification

Navigation