Abstract
We extend modular techniques for computing Gröbner bases from the commutative setting to the vast class of noncommutative G-algebras. As in the commutative case, an effective verification test is only known to us in the graded case. In the general case, our algorithm is probabilistic in the sense that the resulting Gröbner basis can only be expected to generate the given ideal, with high probability. We have implemented our algorithm in the computer algebra system Singular and give timings to compare its performance with that of other instances of Buchberger’s algorithm, testing examples from D-module theory as well as classical benchmark examples. A particular feature of the modular algorithm is that it allows parallel runs.
This is a preview of subscription content, log in to check access.
Notes
- 1.
“!!” means double factorial.
- 2.
We have to use a weighted cardinality count: when enlarging \({\mathcal {P}}\), the total weight of the elements already present must be strictly smaller than the total weight of the new elements. Otherwise, though highly unlikely in practical terms, it may happen that only unlucky primes are accumulated.
References
- 1.
Andres, D., Brickenstein, M., Levandovskyy, V., Martín-Morales, J., Schönemann, H.: Constructive D-module theory with SINGULAR. Math. Comput. Sci. 4(2–3), 359–383 (2010)
- 2.
Apel, J.: Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung (Gröbner bases in noncommutative algebras and their applications). Karl-Marx-Univ., Leipzig (1988)
- 3.
Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35(4), 403–419 (2003)
- 4.
Bernstein, I.: Modules over a ring of differential operators. Study of the fundamental solutions of equations with constant coefficients. Funct. Anal. Appl. 5, 89–101 (1971)
- 5.
Böhm, J., Decker, W., Fieker, C., Pfister, G.: The use of bad primes in rational reconstruction. Math. Comp. 84(296), 3013–3027 (2015)
- 6.
Bueso, J., Gómez-Torrecillas, J., Lobillo, F.: Re-filtering and exactness of the Gelfand–Kirillov dimension. Bull. Sci. Math. 125(8), 689–715 (2001)
- 7.
Bueso, J., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-commutative Algebra, Applications to Quantum Groups. Kluwer Academic Publishers, Dordrecht (2003)
- 8.
Castro, F.: Calculs effectifs pour les idéaux d’opérateurs différentiels. (Effective computations for ideals of differential operators). Géométrie algébrique et applications, C. R. 2ième Conf. int., La Rabida/Espagne 1984, III: Géométrie réelle. Systèmes diff́erentielles et théorie de Hodge, Trav. Cours 24, 1–19 (1987)
- 9.
Ceria, M., Mora, T.: Buchberger–Zacharias theory of multivariate Ore extensions. J. Pure Appl. Algebra 221(12), 2974–3026 (2017)
- 10.
Ceria, M., Mora, T.: Buchberger–Weispfenning theory for effective associative rings. J. Symb. Comput. 83, 112–146 (2017)
- 11.
Cheng, H., Labahn, G.: Output-sensitive modular algorithms for polynomial matrix normal forms. J. Symb. Comput. 42(7), 733–750 (2007)
- 12.
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-2: a computer algebra system for polynomial computations (2019). http://www.singular.uni-kl.de
- 13.
Ebert, G.: Some comments on the modular approach to Gröbner-bases. SIGSAM Bull. 17(2), 28–32 (1983)
- 14.
García García, J.I., García Miranda, J., Lobillo, F.: Elimination orderings and localization in PBW algebras. Linear Algebra Appl. 430(8–9), 2133–2148 (2009)
- 15.
García Román, M., García Román, S.: Gröbner bases and syzygies on bimodules over PBW algebras. J. Symb. Comput. 40(3), 1039–1052 (2005)
- 16.
Greuel, G.-M., Levandovskyy, V., Motsak, O., Schönemann, H.: Plural. a singular 4-1-2 subsystem for computations with non-commutative polynomial algebras (2019). http://www.singular.uni-kl.de
- 17.
Idrees, N., Pfister, G., Steidel, S.: Parallelization of modular algorithms. J. Symb. Comput. 46(6), 672–684 (2011)
- 18.
Kandri-Rody, A., Weispfenning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)
- 19.
Krause, G.R., Lenagan, T.H.: Growth of Algebras and Gelfand–Kirillov Dimension, Revised edn. American Mathematical Society, Providence (2000)
- 20.
Kredel, H.: Solvable Polynomial Rings. Shaker, Aachen (1993)
- 21.
Levandovskyy, V.: Non-commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Doctoral thesis, Universität Kaiserslautern (2005)
- 22.
Levandovskyy, V.: PBW bases, non-degeneracy conditions and applications. In: Representations of Algebras and Related Topics. Proceedings from the 10th International Conference, ICRA X, Toronto, Canada, July 15–August 10, 2002. Dedicated to V. Dlab on the occasion of his 70th birthday, pp. 229–246. American Mathematical Society (AMS), Providence (2005)
- 23.
Levandovskyy, V., Koutschan, C., Motsak, O.: On two-generated non-commutative algebras subject to the affine relation. In: Gerdt, V., Koepf, W., Mayr, E., Vorozhtsov, E. (eds.) Proceedings of CASC ’2011, Volume 6885 of LNCS, pp. 309–320. Springer, Berlin (2011)
- 24.
Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ISSAC 2003, Philadelphia, PA, USA, August 3–6, 2003, pp. 176–183. ACM Press, New York (2003)
- 25.
Li, H.: Noncommutative Gröbner bases and filtered-graded transfer. Lecture Notes in Mathematics, vol. 1795. Springer, Berlin (2002)
- 26.
Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994)
- 27.
Noro, M.: An efficient modular algorithm for computing the global \(b\)-function. In: Cohen, A.M., Gao, X.-S., Takayama, N. (eds.) Mathematical Software (Beijing, 2002), pp. 147–157. World Sci. Publ, River Edge (2002)
- 28.
Noro, M., Yokoyama, K.: Usage of modular techniques for efficient computation of ideal operations. Math. Comput. Sci. 12(1), 1–32 (2018)
- 29.
Pritchard, F.L.: The ideal membership problem in non-commutative polynomial rings. J. Symb. Comput. 22(1), 27–48 (1996)
- 30.
Reiffen, H.-J.: Das Lemma von Poincaré für holomorphe Differentialformen auf komplexen Räumen. Math. Z. 101, 269–284 (1967)
- 31.
Sabbah, C.: Proximité évanescente I. La structure polaire d’un D-Module. Compos. Math. 62(3), 283–328 (1987)
- 32.
Takayama, N.: Gröbner basis and the problem of contiguous relations. Japan J. Appl. Math. 6(1), 147–160 (1989)
- 33.
The SymbolicData Project (2019). https://symbolicdata.github.io
- 34.
Weispfenning, V.: Finite Gröbner bases in non-noetherian skew polynomial rings. In: Proceedings of ISSAC’92, pp. 329–334. ACM Press, New York (1992)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Viktor Levandovskyy: Supported by the SFB-TRR 195 “Symbolic Tools in Mathematics and their Applications” of the German Research Foundation (DFG). Sharwan K. Tiwari: Supported by the German Academic Exchange Service (DAAD).
Rights and permissions
About this article
Cite this article
Decker, W., Eder, C., Levandovskyy, V. et al. Modular Techniques for Noncommutative Gröbner Bases. Math.Comput.Sci. 14, 19–33 (2020). https://doi.org/10.1007/s11786-019-00412-9
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Noncommutative Gröbner bases
- G-algebras
- PBW-algebras
- Modular techniques
Mathematics Subject Classification
- 13P10