Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Mathematics in Computer Science
  3. Article
Robust Hadamard Matrices, Unistochastic Rays in Birkhoff Polytope and Equi-Entangled Bases in Composite Spaces
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

$$4\times 4$$ 4 × 4 unextendible product basis and genuinely entangled space

15 May 2019

Kai Wang, Lin Chen, … Yumin Guo

Mutually unbiased unextendible maximally entangled bases in some systems of higher dimension

24 November 2020

Zong-Xing Xiong, Zhu-Jun Zheng & Shao-Ming Fei

Novel constructions of mutually unbiased tripartite absolutely maximally entangled bases

17 September 2022

Tian Xie, Yajuan Zang, … Shao-Ming Fei

Rank-1 Approximation for Entangled Multipartite Real Systems

07 March 2022

Matthew M. Lin & Moody T. Chu

Geometric quantification of multiparty entanglement through orthogonality of vectors

06 November 2021

Abhinash Kumar Roy, Nitish Kumar Chandra, … Prasanta K. Panigrahi

Constructions of unextendible entangled bases

04 September 2019

Fei Shi, Xiande Zhang & Yu Guo

Quantum entanglement, symmetric nonnegative quadratic polynomials and moment problems

17 November 2020

Grigoriy Blekherman & Bharath Hebbe Madhusudhana

Distribution of entanglement in multipartite systems

14 January 2019

Awais Khan, Ahmad Farooq, … Hyundong Shin

Mutually Unbiased Unextendible Maximally Entangled Bases in ℂ d ⊗ ℂ d + 1 $\mathbb {C}^{d}\otimes \mathbb {C}^{d + 1}$

20 September 2018

Yi-yang Song, Gui-jun Zhang, … Yuan-hong Tao

Download PDF
  • Open Access
  • Published: 19 September 2018

Robust Hadamard Matrices, Unistochastic Rays in Birkhoff Polytope and Equi-Entangled Bases in Composite Spaces

  • Grzegorz Rajchel1,2,
  • Adam Gąsiorowski1 &
  • Karol Życzkowski2,3 

Mathematics in Computer Science volume 12, pages 473–490 (2018)Cite this article

  • 342 Accesses

  • 4 Citations

  • 3 Altmetric

  • Metrics details

Abstract

We study a special class of (real or complex) robust Hadamard matrices, distinguished by the property that their projection onto a 2-dimensional subspace forms a Hadamard matrix. It is shown that such a matrix of order n exists, if there exists a skew Hadamard matrix or a symmetric conference matrix of this size. This is the case for any even \(n\le 20\), and for these dimensions we demonstrate that a bistochastic matrix B located at any ray of the Birkhoff polytope, (which joins the center of this body with any permutation matrix), is unistochastic. An explicit form of the corresponding unitary matrix U, such that \(B_{ij}=|U_{ij}|^2\), is determined by a robust Hadamard matrix. These unitary matrices allow us to construct a family of orthogonal bases in the composed Hilbert space of order \(n \times n\). Each basis consists of vectors with the same degree of entanglement and the constructed family interpolates between the product basis and the maximally entangled basis. In the case \(n=4\) we study geometry of the set \({\mathcal U}_4\) of unistochastic matrices, conjecture that this set is star-shaped and estimate its relative volume in the Birkhoff polytope \({\mathcal B}_4\).

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Auberson, G., Martin, A., Mennessier, G.: On the reconstruction of a unitary matrix from its moduli. Commun. Math. Phys. 140, 417–437 (1991)

    Article  MathSciNet  Google Scholar 

  2. Au-Yeng, Y.H., Cheng, C.M.: Permutation matrices whose convex combinations are orthostochastic. Linear Algebra Appl. 150, 243–253 (1991)

    Article  MathSciNet  Google Scholar 

  3. Au-Yeng, Y.H., Poon, Y.T.: \(3\times 3\) Orthostochastic matrices and the convexity of generalized numerical ranges. Linear Algebra Appl. 27, 69–79 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bengtsson, I., Dumitru, I.: Isoentangled orbits and isoentangled bases. In: Working Notes, Stockholm (2016)

  5. Bengtsson, I., Ericsson, A., Kuś, M., Tadej, W., Życzkowski, K.: Birkhoff’s polytope and unistochastic matrices, \(N = 3\) and \(N = 4\). Commun. Math. Phys. 259, 307–324 (2005)

    Article  MathSciNet  Google Scholar 

  6. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucumán Rev. A5, 147 (1946)

    Google Scholar 

  7. Cappellini, V., Sommers, H.-J., Bruzda, W., Życzkowski, K.: Random bistochastic matrices. J. Phys. A 42, 365209 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cohn, J.H.E.: Hadamard matrices and some generalisations. Am. Math. Mon. 72, 515–518 (1965)

    Article  MathSciNet  Google Scholar 

  9. Collins, B., Kousha, T., Kulik, R., Szarek, T., Życzkowski, K.: The accessibility of convex bodies and derandomization of the hit and run algorithm. J. Convex Anal. 24, 903–916 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Craigen, R.: Equivalence classes of inverse orthogonal and unit Hadamard matrices. Bull. Aust. Math. Soc. 44, 109–115 (1991)

    Article  MathSciNet  Google Scholar 

  11. Diţǎ, P.: Separation of unistochastic matrices from the double stochastic ones. Recovery of a \(3 \times 3\) unitary matrix from experimental data. J. Math. Phys. 47, 083510 (2006)

    Article  MathSciNet  Google Scholar 

  12. Dunkl, C., Życzkowski, K.: Volume of the set of unistochastic matrices of order 3 and the mean Jarlskog invariant. J. Math. Phys. 50, 123521 (2009)

    Article  MathSciNet  Google Scholar 

  13. Goyeneche, D., Turek, O.: Equiangular tight frames and unistochastic matrices. J. Phys. A 50, 245304 (2017)

    Article  MathSciNet  Google Scholar 

  14. Gheorghiu, V., Loo, S.Y.: Construction of equientangled bases in arbitrary dimensions via quadratic Gauss sums and graph states. Phys. Rev. A 81, 062341 (2010)

    Article  Google Scholar 

  15. Haagerup, U.: Orthogonal maximal abelian *-subalgebras of the \(n \times n\) matrices and cyclic \(n\)-rots. In: Doplicher, S., et al. (eds.) Operator Algebras and Quantum Field Theory (Rome), pp. 296–322. International Press, Cambridge (1996)

    Google Scholar 

  16. Horadam, K.J.: Hadamard Matrices and Their Applications. Princeton University Press, Princeton (2007)

    Book  Google Scholar 

  17. Jarlskog, C., Stora, R.: Unitarity polygons and CP violation areas and phases in the standard electroweak model. Phys. Lett. B 208(2), 268–274 (1988)

    Article  Google Scholar 

  18. Karimipour, V., Memarzadeh, L.: Equientangled bases in arbitrary dimensions. Phys. Rev. A 73, 012329 (2006)

    Article  MathSciNet  Google Scholar 

  19. Karlsson, B.R.: \(H_{2}\)-reducible complex Hadamard matrices of order \(6\). Linear Algebra Appl. 434, 239–246 (2011)

    Article  MathSciNet  Google Scholar 

  20. Kingman, J.F.C.: Random discrete distributions. J. R. Stat. Soc. B 37, 1–22 (1975)

    MathSciNet  MATH  Google Scholar 

  21. Koukouvinos, C., Stylianou, S.: On skew-Hadamard matrices. Discrete Math. 308, 2723–2731 (2008)

    Article  MathSciNet  Google Scholar 

  22. Nakazato, H.: Set of \(3 \times 3\) orthostochastic matrices. Nihonkai Math. J. 7, 83–100 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Orrick, W.P.: Switching operations for Hadamard matrices. SIAM J. Discrete Math. 22, 31–50 (2008)

    Article  MathSciNet  Google Scholar 

  24. Pakoński, P.: Ph.D. thesis. Jagiellonian University (2002)

  25. Pakoński, P., Życzkowski, K., Kuś, M.: Classical 1D maps, quantum graphs and ensembles of unitary matrices. J. Phys. A 34, 9303–9317 (2001)

    Article  MathSciNet  Google Scholar 

  26. Sinkhorn, R.: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35, 876–879 (1964)

    Article  MathSciNet  Google Scholar 

  27. Szöllősi, F.: Construction, classification and parametrization of complex Hadamard matrices (2011). preprint arXiv:1110.5590

  28. Tadej, W., Życzkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13, 133–177 (2006)

    Article  MathSciNet  Google Scholar 

  29. van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335–348 (1966)

    Article  MathSciNet  Google Scholar 

  30. Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A 34, 7081 (2001)

    Article  MathSciNet  Google Scholar 

  31. Życzkowski, K., Kuś, M., Słomczyński, W., Sommers, H.-J.: Random unistochastic matrices. J. Phys. A 36, 3425–3450 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors (KŻ) had a chance to discuss the unistochasticity problem with the late Uffe Haagerup during the conference in Będlewo in July 2014, where he learned about the way to treat the \(n=4\) case presented in the “Appendix A”. It is a pleasure to thank Ingemar Bengtsson and Irina Dimitru for numerous discussions on equi-entangled bases and for sharing with us their unpublished notes. We are thankful to Dardo Goyeneche and Wojciech Tadej for numerous interactions and also to Robert Craigen and William Orrick for fruitful discussions during the workshop in Budapest in July 2017. Special thanks are due to Mate Matolcsi and Ferenc Szöllősi, for organizing such a successful conference which made these interactions possible. We are deeply obliged to the referee for a long list of constructive comments, valuable hints to the literature and for suggesting us results presented in “Appendix D”. Financial support by Narodowe Centrum Nauki under the Grant No. DEC-2015/18/A/ST2/00274 is gratefully acknowledged.

Author information

Authors and Affiliations

  1. Wydział Fizyki, Uniwersytet Warszawski, ul. Pasteura 5, 02-093, Warszawa, Poland

    Grzegorz Rajchel & Adam Gąsiorowski

  2. Centrum Fizyki Teoretycznej PAN, Al. Lotników 32/44, 02-668, Warszawa, Poland

    Grzegorz Rajchel & Karol Życzkowski

  3. Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, ul. Łojasiewicza 11, 30-348, Kraków, Poland

    Karol Życzkowski

Authors
  1. Grzegorz Rajchel
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Adam Gąsiorowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Karol Życzkowski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Grzegorz Rajchel.

Additional information

Dedicated to the memory of Uffe Haagerup (1949–2015).

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajchel, G., Gąsiorowski, A. & Życzkowski, K. Robust Hadamard Matrices, Unistochastic Rays in Birkhoff Polytope and Equi-Entangled Bases in Composite Spaces. Math.Comput.Sci. 12, 473–490 (2018). https://doi.org/10.1007/s11786-018-0384-y

Download citation

  • Received: 02 January 2018

  • Revised: 27 February 2018

  • Accepted: 16 June 2018

  • Published: 19 September 2018

  • Issue Date: December 2018

  • DOI: https://doi.org/10.1007/s11786-018-0384-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Hadamard matrices
  • Birkhoff polytope
  • Unistochasticity

Mathematics Subject Classification

  • 05B20
  • 05A05
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.