Arnon, D.S.: Algorithms for the geometry of semi-algebraic sets. Technical Report 436, Computer Science Department, University of Wisconsin-Madison, Ph.D. Thesis (1981)
Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996)
MathSciNet
Article
MATH
Google Scholar
Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Proceedings of the AB 2007, volume 4545 of LNCS, pp. 66–80. Springer (2007)
Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Proceedings of the AB 2008, volume 5147 of LNCS, pp. 56–64. Springer (2008)
Brown, C.W., Gross C.: Efficient preprocessing methods for quantifier elimination. In: Proceedings of the CASC 2006, volume 4194 of LNCS, pp. 89–100. Springer (2006)
Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)
Article
MATH
Google Scholar
Brown, C.W., Košta, M.: Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Comput. 70, 14–48 (2014)
MathSciNet
Article
MATH
Google Scholar
Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Doctoral dissertation, Mathematical Institute, University of Innsbruck, Innsbruck, Austria (1965)
Chou, S.-C.: Mechanical Geometry Theorem Proving. Mathematics and Its Applications. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo (1988)
Google Scholar
Clarke, B.L.: Stability of complex reaction networks. In: Prigogine, I., Rice, Stuart A. (eds.) Advances in Chemical Physics, vol. 43. Wiley, Hoboken (1980)
Chapter
Google Scholar
Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition—preliminary report. ACM SIGSAM Bull. 8(3), 80–90 (1974). Proc. EUROSAM ’74
Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages. 2nd GI Conference, volume 33 of LNCS, pp. 134–183. Springer (1975)
Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition—twenty years of progress. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 8–23. Springer, Berlin (1998)
Chapter
Google Scholar
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)
MathSciNet
Article
MATH
Google Scholar
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)
MathSciNet
Article
MATH
Google Scholar
Davis, M.: Mathematical Procedures for Decision Problems. Final Report on Ordnance Research and Development Project No. TB2-0001 (1954)
Dolzmann A., Sturm T. Redlog User Manual, 2nd edn. Technical Report MIP-9905, FMI, Universität Passau, Germany (1999)
Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Autom. Reason. 21(3), 357–380 (1998)
MathSciNet
Article
MATH
Google Scholar
Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)
Article
Google Scholar
Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. J. Symb. Comput. 24(2), 209–231 (1997)
MathSciNet
Article
MATH
Google Scholar
Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Efficient methods to compute Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Proceedings of the CASC 2013, volume 8136 of LNCS, pp. 88–99. Springer (2013)
Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Proceedings of the CASC 2012, volume 7442 of LNCS. Springer (2012)
Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J. Comput. Phys. 291, 279–302 (2015)
MathSciNet
Article
MATH
Google Scholar
Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G.: Crossing the Hopf bifurcation in a live predator–prey system. Science 290(5495), 1358–1360 (2000)
Article
Google Scholar
Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J. Symb. Comput. 40(6), 1361–1382 (2005)
MathSciNet
Article
MATH
Google Scholar
Godbole, D.N., Lygeros, J.: Longitudinal control of the lead car of a platoon. IEEE Trans. Veh. Technol. 43(4), 1125–1135 (1994)
Article
Google Scholar
Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2), 65–108 (1988)
MathSciNet
Article
MATH
Google Scholar
Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Proceedings of the CAV 2008, volume 5123 of LNCS, pp. 190–203. Springer (2008)
Hilbert, D.: Grundlagen der Geometrie, 13th edn. Teubner Studienbücher Mathematik. Teubner, Stuttgart (1987)
MATH
Google Scholar
Hong, H.: Comparison of several decision algorithms for the existential theory of the reals. Technical Report 91-41.0, RISC, Johannes Kepler University, A-4040 Linz, Austria (1991)
Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symb. Comput. 24(2), 161–187 (1997)
MathSciNet
Article
MATH
Google Scholar
Jirstrand, M.: Cylindrical algebraic decomposition—an introduction. Technical Report 1995-10-18, Department of Electrical Engineering, Linköping University, Linköping, Sweden (1995)
Kahoui, M.El, Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symb. Comput. 30(2), 161–179 (2000)
MathSciNet
Article
MATH
Google Scholar
Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399–408 (1986)
MathSciNet
Article
MATH
Google Scholar
Košta, M.: New concepts for real quantifier elimination by virtual substitution. Doctoral dissertation, Saarland University, Germany (2016)
Košta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. J. Symb. Comput. 74, 255–275 (2016)
MathSciNet
Article
MATH
Google Scholar
Kutzler, B.A., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. J. Symb. Comput. 2(4), 389–397 (1986)
MathSciNet
Article
MATH
Google Scholar
Liu, W.-M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)
MathSciNet
Article
MATH
Google Scholar
Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)
MathSciNet
Article
MATH
Google Scholar
McCallum, S.: An improved projection operation for cylindrical algebraic decomposition of three-dimensional space. J. Symb. Comput. 5(1–2), 141–161 (1988)
MathSciNet
Article
MATH
Google Scholar
McPhee, N.F., Chou, S.-C., Gao, X.-S.: Mechanically proving geometry theorems using a combination of Wu’s method and Collins’ method. In: Proceedings of CADE-12, volume 814 of LNAI, pp. 401–415. Springer (1994)
Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. J. Math. Biol. 55(1), 61–86 (2007)
MathSciNet
Article
MATH
Google Scholar
Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)
MathSciNet
Article
MATH
Google Scholar
Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell division cycle of fission yeast. Chaos 11(1), 277–286 (2001)
Article
MATH
Google Scholar
Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)
MathSciNet
Article
MATH
Google Scholar
Prestel, A.: Lectures on formally real fields, volume 1093 of Lecture Notes in Mathematics. Springer (1984)
Puri, A., Varaiya, P.: Driving safely in smart cars. In: Proceedings of the 1995 American Control Conference. IEEE (1995)
Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part II: the general decision problem. Preliminaries for quantifier elimination. J. Symb. Comput. 13(3), 301–328 (1992)
MathSciNet
Article
MATH
Google Scholar
Ritt, J.F.: Differential Equations from the Algebraic Standpoint, volume 14 of Colloquium Publications. American Mathematical Society, New York (1932)
Google Scholar
Ritt, J.F.: Differential Algebra, volume 33 of Colloquium Publications. American Mathematical Society, Providence (1950)
Google Scholar
Seidenberg, A.: An elimination theory for differential algebra. Univ. Calif. Publ. Math. New Ser. 3(2), 31–66 (1956)
MathSciNet
Google Scholar
Seidenberg, A.: Some remarks on Hilbert’s Nullstellensatz. Arch. Math. 7(4), 235–240 (1956)
MathSciNet
Article
MATH
Google Scholar
Seidenberg, A.: On \(k\)-constructable sets, \(k\)-elementary formulae, and elimination theory. J. für die reine und angewandte Math. 239–240, 256–267 (1969)
MathSciNet
MATH
Google Scholar
Seidl, A., Sturm, T.: A generic projection operator for partial cylindrical algebraic decomposition. In: Proceedings of the ISSAC 2003, pp. 240–247. ACM (2003)
Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback loops for Shilnikov chaos the peroxidase–oxidase reaction. J. Chem. Phys. 125(1), 014901-1–014901-12 (2006)
Article
Google Scholar
Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proceedings of the ISSAC 2011, pp. 329–336. ACM (2011)
Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In: Proceedings of the AB 2008, volume 5147 of LNCS, pp. 200–215. Springer (2008)
Sturm, T., Weispfenning, V.: Computational geometry problems in Redlog. In: Automated Deduction in Geometry, volume 1360 of LNAI, pp. 58–86. Springer (1998)
Sturm, T., Weispfenning, V.: Rounding and blending of solids by a real elimination method. In: Proceedings of the IMACS World Congress 1997, volume 2, pp. 727–732. Wissenschaft & Technik Verlag, Berlin (1997)
Sturm, T.: An algebraic approach to offsetting and blending of solids. In: Proceedings of the CASC 2000, pp. 367–382. Springer (2000)
Sturm, T.: New domains for applied quantifier elimination. In: Proceedings of the CASC 2006, volume 4194 of LNCS. Springer (2006)
Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation, Universität Passau, Germany (1999)
Sturm, T.: Subtropical real root finding. In: Proceedings of the ISSAC 2015, pp. 347–354. ACM (2015)
Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci. 2(3), 493–515 (2009)
MathSciNet
Article
MATH
Google Scholar
Tarski, A.: A decision method for elementary algebra and geometry. Prepared for publication by J. C. C. McKinsey. In: RAND Report R109, August 1948, Revised May 1951, 2nd Edition, RAND (1957)
Tiwari, A.: Approximate reachability for linear systems. In: Proceedings of the HSCC 2003, volume 2623 of LNCS, pp. 514–525. Springer (2003)
Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001)
Article
Google Scholar
Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network. Biophys. J. 89(6), 3837–3845 (2005)
Article
Google Scholar
Wang, D.: Reasoning about geometric problems using an elimination method. In: Automated Practical Reasoning, Texts and Monographs in Symbolic Computation, pp. 147–185. Springer (1995)
Wang, D.: An elimination method for polynomial systems. J. Symb. Comput. 16(2), 83–114 (1993)
MathSciNet
Article
MATH
Google Scholar
Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bull. Math. Biol. 73(4), 899–916 (2011)
MathSciNet
Article
MATH
Google Scholar
Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1–2), 3–27 (1988)
MathSciNet
Article
MATH
Google Scholar
Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)
MathSciNet
Article
MATH
Google Scholar
Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Syst. Sci. Math. Sci. 4(3), 207–235 (1984)
MathSciNet
Google Scholar
Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 219–252 (1986)
Article
MATH
Google Scholar