Skip to main content

A Survey of Some Methods for Real Quantifier Elimination, Decision, and Satisfiability and Their Applications

Abstract

Effective quantifier elimination procedures for first-order theories provide a powerful tool for generically solving a wide range of problems based on logical specifications. In contrast to general first-order provers, quantifier elimination procedures are based on a fixed set of admissible logical symbols with an implicitly fixed semantics. This admits the use of sub-algorithms from symbolic computation. We are going to focus on quantifier elimination for the reals and its applications giving examples from geometry, verification, and the life sciences. Beyond quantifier elimination we are going to discuss recent results with a subtropical procedure for an existential fragment of the reals. This incomplete decision procedure has been successfully applied to the analysis of reaction systems in chemistry and in the life sciences.

References

  1. Arnon, D.S.: Algorithms for the geometry of semi-algebraic sets. Technical Report 436, Computer Science Department, University of Wisconsin-Madison, Ph.D. Thesis (1981)

  2. Basu, S., Pollack, R., Roy, M.-F.: On the combinatorial and algebraic complexity of quantifier elimination. J. ACM 43(6), 1002–1045 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  3. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Proceedings of the AB 2007, volume 4545 of LNCS, pp. 66–80. Springer (2007)

  4. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Proceedings of the AB 2008, volume 5147 of LNCS, pp. 56–64. Springer (2008)

  5. Brown, C.W., Gross C.: Efficient preprocessing methods for quantifier elimination. In: Proceedings of the CASC 2006, volume 4194 of LNCS, pp. 89–100. Springer (2006)

  6. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  7. Brown, C.W., Košta, M.: Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Comput. 70, 14–48 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  8. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Doctoral dissertation, Mathematical Institute, University of Innsbruck, Innsbruck, Austria (1965)

  9. Chou, S.-C.: Mechanical Geometry Theorem Proving. Mathematics and Its Applications. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo (1988)

    Google Scholar 

  10. Clarke, B.L.: Stability of complex reaction networks. In: Prigogine, I., Rice, Stuart A. (eds.) Advances in Chemical Physics, vol. 43. Wiley, Hoboken (1980)

    Chapter  Google Scholar 

  11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition—preliminary report. ACM SIGSAM Bull. 8(3), 80–90 (1974). Proc. EUROSAM ’74

  12. Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages. 2nd GI Conference, volume 33 of LNCS, pp. 134–183. Springer (1975)

  13. Collins, G.E.: Quantifier elimination by cylindrical algebraic decomposition—twenty years of progress. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 8–23. Springer, Berlin (1998)

    Chapter  Google Scholar 

  14. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12(3), 299–328 (1991)

    MathSciNet  Article  MATH  Google Scholar 

  15. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  16. Davis, M.: Mathematical Procedures for Decision Problems. Final Report on Ordnance Research and Development Project No. TB2-0001 (1954)

  17. Dolzmann A., Sturm T. Redlog User Manual, 2nd edn. Technical Report MIP-9905, FMI, Universität Passau, Germany (1999)

  18. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Autom. Reason. 21(3), 357–380 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  19. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)

    Article  Google Scholar 

  20. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered fields. J. Symb. Comput. 24(2), 209–231 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  21. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Efficient methods to compute Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Proceedings of the CASC 2013, volume 8136 of LNCS, pp. 88–99. Springer (2013)

  22. Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Proceedings of the CASC 2012, volume 7442 of LNCS. Springer (2012)

  23. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J. Comput. Phys. 291, 279–302 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  24. Fussmann, G.F., Ellner, S.P., Shertzer, K.W., Hairston Jr., N.G.: Crossing the Hopf bifurcation in a live predator–prey system. Science 290(5495), 1358–1360 (2000)

    Article  Google Scholar 

  25. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J. Symb. Comput. 40(6), 1361–1382 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  26. Godbole, D.N., Lygeros, J.: Longitudinal control of the lead car of a platoon. IEEE Trans. Veh. Technol. 43(4), 1125–1135 (1994)

    Article  Google Scholar 

  27. Grigoriev, D.: Complexity of deciding Tarski algebra. J. Symb. Comput. 5(1–2), 65–108 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  28. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Proceedings of the CAV 2008, volume 5123 of LNCS, pp. 190–203. Springer (2008)

  29. Hilbert, D.: Grundlagen der Geometrie, 13th edn. Teubner Studienbücher Mathematik. Teubner, Stuttgart (1987)

    MATH  Google Scholar 

  30. Hong, H.: Comparison of several decision algorithms for the existential theory of the reals. Technical Report 91-41.0, RISC, Johannes Kepler University, A-4040 Linz, Austria (1991)

  31. Hong, H., Liska, R., Steinberg, S.: Testing stability by quantifier elimination. J. Symb. Comput. 24(2), 161–187 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  32. Jirstrand, M.: Cylindrical algebraic decomposition—an introduction. Technical Report 1995-10-18, Department of Electrical Engineering, Linköping University, Linköping, Sweden (1995)

  33. Kahoui, M.El, Weber, A.: Deciding Hopf bifurcations by quantifier elimination in a software-component architecture. J. Symb. Comput. 30(2), 161–179 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  34. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399–408 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  35. Košta, M.: New concepts for real quantifier elimination by virtual substitution. Doctoral dissertation, Saarland University, Germany (2016)

  36. Košta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. J. Symb. Comput. 74, 255–275 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  37. Kutzler, B.A., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. J. Symb. Comput. 2(4), 389–397 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  38. Liu, W.-M.: Criterion of Hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  39. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  40. McCallum, S.: An improved projection operation for cylindrical algebraic decomposition of three-dimensional space. J. Symb. Comput. 5(1–2), 141–161 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  41. McPhee, N.F., Chou, S.-C., Gao, X.-S.: Mechanically proving geometry theorems using a combination of Wu’s method and Collins’ method. In: Proceedings of CADE-12, volume 814 of LNAI, pp. 401–415. Springer (1994)

  42. Mincheva, M., Roussel, M.R.: Graph-theoretic methods for the analysis of chemical and biochemical networks. I. Multistability and oscillations in ordinary differential equation models. J. Math. Biol. 55(1), 61–86 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  43. Niu, W., Wang, D.: Algebraic approaches to stability analysis of biological systems. Math. Comput. Sci. 1(3), 507–539 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  44. Novak, B., Pataki, Z., Ciliberto, A., Tyson, J.J.: Mathematical model of the cell division cycle of fission yeast. Chaos 11(1), 277–286 (2001)

    Article  MATH  Google Scholar 

  45. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  46. Prestel, A.: Lectures on formally real fields, volume 1093 of Lecture Notes in Mathematics. Springer (1984)

  47. Puri, A., Varaiya, P.: Driving safely in smart cars. In: Proceedings of the 1995 American Control Conference. IEEE (1995)

  48. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. Part II: the general decision problem. Preliminaries for quantifier elimination. J. Symb. Comput. 13(3), 301–328 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  49. Ritt, J.F.: Differential Equations from the Algebraic Standpoint, volume 14 of Colloquium Publications. American Mathematical Society, New York (1932)

    Google Scholar 

  50. Ritt, J.F.: Differential Algebra, volume 33 of Colloquium Publications. American Mathematical Society, Providence (1950)

    Google Scholar 

  51. Seidenberg, A.: An elimination theory for differential algebra. Univ. Calif. Publ. Math. New Ser. 3(2), 31–66 (1956)

    MathSciNet  Google Scholar 

  52. Seidenberg, A.: Some remarks on Hilbert’s Nullstellensatz. Arch. Math. 7(4), 235–240 (1956)

    MathSciNet  Article  MATH  Google Scholar 

  53. Seidenberg, A.: On \(k\)-constructable sets, \(k\)-elementary formulae, and elimination theory. J. für die reine und angewandte Math. 239–240, 256–267 (1969)

    MathSciNet  MATH  Google Scholar 

  54. Seidl, A., Sturm, T.: A generic projection operator for partial cylindrical algebraic decomposition. In: Proceedings of the ISSAC 2003, pp. 240–247. ACM (2003)

  55. Sensse, A., Hauser, M.J.B., Eiswirth, M.: Feedback loops for Shilnikov chaos the peroxidase–oxidase reaction. J. Chem. Phys. 125(1), 014901-1–014901-12 (2006)

    Article  Google Scholar 

  56. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination. In: Proceedings of the ISSAC 2011, pp. 329–336. ACM (2011)

  57. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation problems in algebraic biology. In: Proceedings of the AB 2008, volume 5147 of LNCS, pp. 200–215. Springer (2008)

  58. Sturm, T., Weispfenning, V.: Computational geometry problems in Redlog. In: Automated Deduction in Geometry, volume 1360 of LNAI, pp. 58–86. Springer (1998)

  59. Sturm, T., Weispfenning, V.: Rounding and blending of solids by a real elimination method. In: Proceedings of the IMACS World Congress 1997, volume 2, pp. 727–732. Wissenschaft & Technik Verlag, Berlin (1997)

  60. Sturm, T.: An algebraic approach to offsetting and blending of solids. In: Proceedings of the CASC 2000, pp. 367–382. Springer (2000)

  61. Sturm, T.: New domains for applied quantifier elimination. In: Proceedings of the CASC 2006, volume 4194 of LNCS. Springer (2006)

  62. Sturm, T.: Real Quantifier Elimination in Geometry. Doctoral dissertation, Universität Passau, Germany (1999)

  63. Sturm, T.: Subtropical real root finding. In: Proceedings of the ISSAC 2015, pp. 347–354. ACM (2015)

  64. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic and logical algorithms to solve Hopf bifurcation problems in algebraic biology. Math. Comput. Sci. 2(3), 493–515 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  65. Tarski, A.: A decision method for elementary algebra and geometry. Prepared for publication by J. C. C. McKinsey. In: RAND Report R109, August 1948, Revised May 1951, 2nd Edition, RAND (1957)

  66. Tiwari, A.: Approximate reachability for linear systems. In: Proceedings of the HSCC 2003, volume 2623 of LNCS, pp. 514–525. Springer (2003)

  67. Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2(12), 908–916 (2001)

    Article  Google Scholar 

  68. Wagner, C., Urbanczik, R.: The geometry of the flux cone of a metabolic network. Biophys. J. 89(6), 3837–3845 (2005)

    Article  Google Scholar 

  69. Wang, D.: Reasoning about geometric problems using an elimination method. In: Automated Practical Reasoning, Texts and Monographs in Symbolic Computation, pp. 147–185. Springer (1995)

  70. Wang, D.: An elimination method for polynomial systems. J. Symb. Comput. 16(2), 83–114 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  71. Weber, A., Sturm, T., Abdel-Rahman, E.O.: Algorithmic global criteria for excluding oscillations. Bull. Math. Biol. 73(4), 899–916 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  72. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1–2), 3–27 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  73. Weispfenning, V.: Quantifier elimination for real algebra—the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  74. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Syst. Sci. Math. Sci. 4(3), 207–235 (1984)

    MathSciNet  Google Scholar 

  75. Wu, W.-T.: Basic principles of mechanical theorem proving in elementary geometries. J. Autom. Reason. 2(3), 219–252 (1986)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Open access funding provided by Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Sturm.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sturm, T. A Survey of Some Methods for Real Quantifier Elimination, Decision, and Satisfiability and Their Applications. Math.Comput.Sci. 11, 483–502 (2017). https://doi.org/10.1007/s11786-017-0319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0319-z

Keywords

  • Real quantifier elimination and decision
  • Satisfiability
  • Virtual substitution
  • Subtropical methods
  • Real geometry
  • Verification
  • Reaction systems
  • Stability analysis

Mathematics Subject Classification

  • 68U99