Mathematics in Computer Science

, Volume 11, Issue 3–4, pp 439–448 | Cite as

A Brief Note on the Approach to the Conic Sections of a Right Circular Cone from Dynamic Geometry

  • Eugenio Roanes-LozanoEmail author


Nowadays there are different powerful 3D dynamic geometry systems (DGS) such as GeoGebra 5, Calques 3D and Cabri geometry 3D. An obvious application of this software that has been addressed by several authors is obtaining the conic sections of a right circular cone: the dynamic capabilities of 3D DGS allows to slowly vary the angle of the plane w.r.t. the axis of the cone, thus obtaining the different types of conics. In all the approaches we have found, a cone is firstly constructed and it is cut through variable planes. We propose to perform the construction the other way round: the plane is fixed (in fact it is a very convenient plane: \(z=0\)) and the cone is the moving object. This way the conic is expressed as a function of x and y (instead of as a function of x, y and z). Moreover, if the 3D DGS has algebraic capabilities, it is possible to obtain the implicit equation of the conic.


Conics Dynamic geometry 3D geometry Computer algebra 

Mathematics Subject Classification

Primary 68U99 Secondary 97G40 Tertiary 68U05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the research Projects TIN2015-66471-P (Government of Spain) and CASI-CAM S2013/ICE-2845 (Comunidad Autónoma de Madrid) and the Research Group ACEIA. We would also like to thank the anonymous referees for their most valuable comments and suggestions, that helped to improve and clarify the paper.


  1. 1.
    Algaba-Durán, E., Mayoral-Masa, F., Rodríguez-Luis, A.J.: Apuntes de Álgebra. Ingeniería Industrial, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla (2009). Accessed 6 Dec 2016
  2. 2.
    Anonymous: GeoGebra 5.0 Manual (2016). Accessed 6 Dec 2016
  3. 3.
    Fernández-Biarge, J.: Estudio de las secciones planas de las cuádricas mediante sus invariantes métricos. Bol. Soc. Puig Adam 63, 32–44 (2003)Google Scholar
  4. 4.
    Botana, F.: A parametric approach to 3D dynamic geometry. Math. Comput. Simul. 104, 3–20 (2014). doi: 10.1016/j.matcom.2012.12.004 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Botana, F., Abánades, M.A., Escribano, J.: Exact internet accessible computation of paths of points in planar linkages and diagrams. Comput. Appl. Eng. Educ. 19(4), 835–841 (2011). doi: 10.1002/cae.20346 CrossRefGoogle Scholar
  6. 6.
    Roanes-Lozano, E.: A constructive approach to the quadrics of revolution using 3D dynamic geometry systems with algebraic capabilities. Comput. Appl. Eng. Educ. (2016). doi: 10.1002/cae.21775 Google Scholar
  7. 7.
    Roanes-Lozano, E., van Labeke, N., Roanes-Macías, E.: Connecting the 3D DGS Calques3D with the CAS Maple. Math. Comput. Simul. 80(6), 1153–1176 (2010). doi: 10.1016/j.matcom.2009.09.008 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roanes-Macías, E., Roanes-Lozano, E.: A Maple package for automatic theorem proving and discovery in 3D-geometry. In: Botana, F., Recio, T. (eds.) Automated Deduction in Geometry, 6th International Workshop, ADG 2006. Lecture Notes in Artificial Intelligence 4689, pp. 171–188. Springer (2007). doi: 10.1007/978-3-540-77356-6_11
  9. 9.
    Stoudt, G.S.: Can you really derive conic formulae from a cone?—conics as orthogonal sections of cones. Accessed 6 Dec 2016
  10. 10. Accessed 6 Dec 2016
  11. 11.

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  1. 1.Departamento de Álgebra, Facultad de Educación, Instituto de Matemática Interdisciplinar (IMI)Universidad Complutense de MadridMadridSpain

Personalised recommendations