Skip to main content
Log in

Towards an Intelligent and Dynamic Geometry Book

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The pursuit of an Intelligent and Dynamic Geometry Book should involve the study of how currently developing methodologies and technologies of geometry knowledge representation, management, deduction and discovery can be incorporated effectively into future education. Just as Doron Zeilberger pointed out in the Plane Geometry: An Elementary Textbook By Shalosh B. Ekhad (Circa 2050), a geometry book from the future would be a computer program, in which all the theorems can be automatically discovered (and of course proved) by computer and beautiful illustrations can be automatically generated and dynamically modified. Such a prospect motivates studies on how to represent and manage digitised geometric knowledge on computer. The geometry book of the future (the \(\mathcal {I}\)nt\(\mathcal {D}\)yn\(\mathcal {G}\)eo\(\mathcal {B}\)ook) should be adaptive, collaborative, visual and intelligent. Adaptive because the contents should adapt itself to the curricula and readers. It will allow collaborative work and its contents would be collaboratively formed using a knowledge base open to contributions. Statements and proofs should be en-lighted by dynamic geometry sketches and diagrams, and the correctness of the proofs should be ensured by computer checking. The book will be intelligent, the reader should be able to ask closed or open questions, and can also for proof hints. The book should also provide interactive exercises with automatic correction. Such a cloud platform, freely available in all standard computational platforms and devices, collaborative, adaptive to each and every user’s profiles, should bring together a whole new generation of mathematical tools with impact in all levels of education. To realise such a book, a network of experts must be built, increasing the connections between several research communities, such as: mathematical knowledge management; computer theorem proving and discovery; education, aggregating expertise in areas such as Proofs in a Learning Context; Interfaces and Searching; Tools Integration; Learning Environments in the Cloud. In this paper the author tries to make the case for such an endeavour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleven, V., Popescu, O., Koedinger, K.R.: Towards tutorial dialog to support self-explanation: adding natural language understanding to a cognitive tutor. In: Moore, J.D., Redfield, C.L., Johnson, W.L. (eds.) Artificial Intelligence in Education: AI-ED in the Wired and Wireless Future, Proceedings of AI-ED 2001, pp. 246–255. IOS Press, Amsterdam (2001)

    Google Scholar 

  2. Balacheff, N., Caferra, R., Cerulli, M., Gaudin, N., Maracci, M., Mariotti, M.A., Muller, J.P., Nicaud, J.F., Occello, M., Olivero, F., Peltier, N., Pesty, S., Soury-Lavergne, S., Sutherland, R., Trgalova, J., Webber, C.: Baghera assessment project, designing an hybrid and emergent educational society. Tech. Rep. 81, Laboratoire Leibniz-IMAG (2003)

  3. Bertot, Y., Guilhot, F., Pottier, L.: Visualizing geometrical statements with GeoView. Electron. Notes Theor. Comput. Sci. 103, 49–65 (2004)

    Article  Google Scholar 

  4. Bokhove, C., Jones, K., Charlton, P., Mavrikis, M., Geraniou, E.: Authoring your own creative, electronic book for mathematics: the mc-squared project (July 2014) (ICMT-2014). http://eprints.soton.ac.uk/367609/

  5. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., Weitzhofer, S.: Automated theorem proving in geogebra: current achievements. J. Autom. Reason. 55(1), 39–59 (2015). doi:10.1007/s10817-015-9326-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Botana, F., Quaresma, P. (eds.): Automated Deduction in Geometry: 10th International Workshop, ADG 2014, Coimbra, July 9–11, 2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9201, pp. 119–128. Springer, Cham (2015)

  7. Boutry, P., Braun, G., Narboux, J.: From Tarski to descartes: formalization of the arithmetization of euclidean geometry. In: Davenport, J.H., Ghourabi, F. (eds.) SCSS 2016, the 7th International Symposium on Symbolic Computation in Software Science. EPiC Series in Computing, vol. 39, p. 15. EasyChair, Tokyo (March 2016). https://hal.archives-ouvertes.fr/hal-01282550

  8. Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility and readability of formal proofs in geometry. In: Botana, F., Quaresma, P. (eds.) Preliminary Proceedings of the 10th International Workshop on Automated Deduction in Geometry (ADG 2014), 9–11 July 2014, University of Coimbra, Portugal. CISUC Technical Reports, No. 2014/01, pp. 31–50. CISUC (2014)

  9. Braun, G., Boutry, P., Narboux, J.: From Hilbert to Tarski. In: 11th International Workshop on Automated Deduction in Geometry. Proceedings of ADG 2016, p. 19. Strasbourg (Jun 2016). https://hal.inria.fr/hal-01332044

  10. Braun, G., Narboux, J.: From Tarski to Hilbert. In: Ida, T., Fleuriot, J. (eds.) Automated Deduction in Geometry, Lecture Notes in Computer Science, vol. 7993, pp. 89–109. Springer, Berlin (2013). doi:10.1007/978-3-642-40672-0_7

  11. Braun, G., Narboux, J.: A synthetic proof of Pappus’ theorem in Tarski’s geometry. J. Autom. Reason. 23 (Apr. 2016). https://hal.inria.fr/hal-01176508

  12. Chen, X., Li, W., Luo, J., Wang, D.: Open geometry textbook: a case study of knowledge acquisition via collective intelligence. In: Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V. (eds.) Intelligent Computer Mathematics. Lecture Notes in Artificial Intelligence, vol. 7362, pp. 432–437. Springer, Berlin (2012)

    Google Scholar 

  13. Chen, X.: Electronic geometry textbook: a geometric textbook knowledge management system. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P., Rideau, L., Rioboo, R., Sexton, A. (eds.) Intelligent Computer Mathematics. pp. 278–292. No. 6167 in Lecture Notes in Computer Science. Springer, Berlin (2010)

  14. Chen, X.: Representation and automated transformation of geometric statements. J. Syst. Sci. Complex. 27(2), 382–412 (2014). doi:10.1007/s11424-014-0316-0

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X., Wang, D.: Management of geometric knowledge in textbooks. Data Knowl. Eng. 73, 43–57 (2012). http://www.sciencedirect.com/science/article/pii/S0169023X11001431

  16. Chou, S.: Proving and discovering geometry theorems using Wu’s method. Ph.D. Thesis, The University of Texas, Austin (1985)

  17. Chou, S.C., Gao, X.S., Zhang, J.Z.: A collection of 110 geometry theorems and their machine produced proofs using full-angles. Tech. Rep. TR-94-4, Department of Computer Science, The Wichita State University (Nov. 1994)

  18. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, I. Multiple and shortest proof generation. J. Autom. Reason. 17(13), 325–347 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, II. Theorem proving with full-angles. J. Autom. Reason. 17(13), 349–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013). http://www.sciencedirect.com/science/article/pii/S095741741300122X

  21. Cobo, P., Fortuny, J., Puertas, E., Richard, P.: AgentGeom: a multiagent system for pedagogical support in geometric proof problems. Int. J. Comput. Math. Learn. 12, 57–79 (2007). doi:10.1007/s10758-007-9111-5

    Article  Google Scholar 

  22. Cueli, M., González-Castro, P., Krawec, J., Núñez, J.C., González-Pienda, J.A.: Hipatia: a hypermedia learning environment in mathematics. An. Psicol. Ann. Psychol. 32(1), 98–105 (2015). http://revistas.um.es/analesps/article/view/analesps.32.1.185641

  23. Fuchs, L., Théry, L.: A formalization of Grassmann–Cayley algebra in COQ and its application to theorem proving in projective geometry. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Automated Deduction in Geometry. Lecture Notes in Computer Science, vol. 6877, pp. 51–67. Springer, Berlin (2011). doi:10.1007/978-3-319-21362-0

  24. Gillies, R.M.: Structuring cooperative group work in classrooms. Int. J. Educ. Res. 39(1–2), 35–49 (2003). http://www.sciencedirect.com/science/article/pii/S0883035503000727

  25. Génevaux, J.D., Narboux, J., Schreck, P.: Formalization of Wu’s simple method in coq. In: Jouannaud, J.P., Shao, Z. (eds.) Certified Programs and Proofs, Lecture Notes in Computer Science, vol. 7086, pp. 71–86. Springer, Berlin (2011). doi:10.1007/978-3-642-25379-9_8

  26. Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: International Workshop on Automated Deduction in Geometry, pp. 42–59. Springer (2008)

  27. Haralambous, Y., Quaresma, P.: Querying geometric figures using a controlled language, ontological graphs and dependency lattices. In: S.W., et al. (ed.) CICM 2014. LNAI, vol. 8543, pp. 298–311. Springer (2014)

  28. Ida, T., Kasem, A., Ghourabi, F., Takahashi, H.: Morley’s theorem revisited: origami construction and automated proof. J. Symb. Comput. 46(5), 571–583 (2011). http://www.sciencedirect.com/science/article/pii/S0747717110001768

  29. Janičić, P.: GCLC—a tool for constructive euclidean geometry and more than that. In: Iglesias, A., Takayama, N. (eds.) Mathematical Software—ICMS 2006, Lecture Notes in Computer Science, vol. 4151, pp. 58–73. Springer (2006)

  30. Janičić, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Janičić, P., Quaresma, P.: System description: GCLCprover + GeoThms. In: Furbach, U., Shankar, N. (eds.) Automated Reasoning, Lecture Notes in Computer Science, vol. 4130, pp. 145–150. Springer (2006)

  32. Jiang, J., Zhang, J.: A review and prospect of readable machine proofs for geometry theorems. J. Syst. Sci. Complex. 25(4), 802–820 (2012). doi:10.1007/s11424-012-2048-3

    Article  MathSciNet  MATH  Google Scholar 

  33. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kortenkamp, U., Blessing, A.M., Dohrmann, C., Kreis, Y., Libbrecht, P., Mercat, C.: Interoperable interactive geometry for Europe—first technological and educational results and future challenges of the intergeo project. In: CERME 6 (2006)

  35. Kortenkamp, U., Dohrmann, C., Kreis, Y., Dording, C., Libbrecht, P., Mercat, C.: Using the intergeo platform for teaching and research. In: Proceedings of the 9th International Conference on Technology in Mathematics Teaching (ICTMT-9) (2009)

  36. Kovács, Z.: The Relation Tool in GeoGebra 5, pp. 53–71. Springer International Publishing (2015). doi:10.1007/978-3-319-21362-0_4

  37. Li, H.: Clifford algebra approaches to mechanical geometry theorem proving. In: Gao, X.S., Wang, D. (eds.) Mathematics Mechanization and Applications, pp. 205–299. Academic, San Diego (2000)

    Google Scholar 

  38. Lin, F.L., Hsieh, F.J., Hanna, G., de Villiers, M. (eds.): Proceedings of the ICMI study 19 conference: proof and proving in mathematics education, vol. 1. The Department of Mathematics, National Taiwan Normal University (2009)

  39. Lin, F.L., Hsieh, F.J., Hanna, G., de Villiers, M. (eds.): Proceedings of the ICMI study 19 conference: proof and proving in mathematics education, vol. 2. The Department of Mathematics, National Taiwan Normal University (2009)

  40. Luengo, V.: Some didactical and epistemological considerations in the design of educational software: the Cabri–Euclide example. Int. J. Comput. Math. Learn. 10(1), 1–29 (2005). https://hal.archives-ouvertes.fr/hal-00961977

  41. Magaud, N., Narboux, J., Schreck, P.: Formalizing desargues’ theorem in coq using ranks. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1110–1115. ACM (2009)

  42. Marinković, V.: Argotrics—automated triangle construction solver. J. Exp. Theor. Artif. Intell. 0(0), 1–25 (2016). doi:10.1080/0952813X.2015.1132271

    Google Scholar 

  43. Marinković, V., Janičić, P., Schreck, P.: Computer theorem proving for verifiable solving of geometric construction problems, pp. 72–93. Springer International Publishing (2015). doi:10.1007/978-3-319-21362-0_5

  44. Martins, C., Couto, P., Fernandes, M., Bastos, C., Lobo, C., Faria, L., Carrapatoso, E.: PCMAT—Mathematics Collaborative Learning Platform, pp. 93–100. Springer, Berlin (2011). doi:10.1007/978-3-642-19917-2_12

  45. Matsuda, N., Vanlehn, K.: Gramy: a geometry theorem prover capable of construction. J. Autom. Reason. 32, 3–33 (2004)

    Article  MathSciNet  Google Scholar 

  46. Matsuda, N., Van Lehn, K.: Advanced geometry tutor: an intelligent tutor that teaches proof-writing with construction. In: Artificial Intelligence in Education—Supporting Learning through Intelligent and Socially Informed Technology, Proceedings of the 12th International Conference on Artificial Intelligence in Education, AIED 2005, pp. 443–450, Amsterdam (18–22 July 2005)

  47. Mendicino, M., Razzaq, L., Heffernan, N.T.: A comparison of traditional homework to computer-supported homework. J. Res. Technol. Educ. 41(3), 331–359 (2009)

    Article  Google Scholar 

  48. Monaghan, J., Trouche, L., Borwein, J.: Tools and Mathematics. Springer International Publishing, Berlin (2016)

    Book  Google Scholar 

  49. Moraes, T.G., Santoro, F.M., Borges, M.R.: Tabulæ: educational groupware for learning geometry. In: 5th IEEE International Conference on Advanced Learning Technologies, 2005. ICALT 2005, pp. 750–754 (July 2005)

  50. Moriyón, R., Saiz, F., Mora, M.: GeoThink: An Environment for Guided Collaborative Learning of Geometry, Nuevas Ideas en Informática Educativa, vol. 4, pp. 200–2008. J. Sánchez (ed), Santiago de Chile (2008)

  51. Narboux, J.: A decision procedure for geometry in coq. In: Slind Konrad, Bunker Annette, G.G.C. (ed.) Theorem Proving in Higher Order Logics 2004. vol. 3223, pp. 225–240. Springer, Park City (Jul 2004). https://hal.inria.fr/inria-00001035

  52. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Eugenio Roanes Lozano, F.B. (ed.) Automated Deduction in Geometry 2006. vol. 4869, pp. 139–156. Francisco Botana, Springer, Pontevedra (Aug 2006). https://hal.inria.fr/inria-00118812

  53. Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom. Reason. 39, 161–180 (2007)

    Article  MATH  Google Scholar 

  54. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Proceedings of Automatic Deduction in Geometry 06. Lecture Notes in Artificial Intelligence, vol. 4869, pp. 139–156. Springer (2007)

  55. Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., Tošić, D.: Communicating Mathematics in The Digital Era, chap. XML-Bases Format for Descriptions of Geometric Constructions and Proofs, pp. 183–197. A. K. Peters, Ltd. (2008)

  56. Quaresma, P.: Thousands of geometric problems for geometric theorem provers (TGTP). In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Automated Deduction in Geometry, Lecture Notes in Computer Science, vol. 6877, pp. 169–181. Springer (2011)

  57. Quaresma, P., Baeta, N.: Current status of the I2GATP common format. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry: 10th International Workshop, ADG 2014, Coimbra, July 9–11, 2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 9201, pp. 119–128. Springer, Cham (2015)

  58. Quaresma, P., Santos, V., Bouallegue, S.: The Web Geometry Laboratory project. In: CICM 2013. LNAI, vol. 7961, pp. 364–368. Springer (2013)

  59. Richard, P., Fortuny, J.: Amélioration des compétences argumentatives à l’aide d’un systéme tutoriel en classe de mathématique au secondaire. Ann. didact. Sci. Cognit. 12, 83–116 (2007)

    Google Scholar 

  60. Richard, P., Fortuny, J., Hohenwarter, M., Gagnon, M.: GeogebraTUTOR: une nouvelle approche pour la recherche sur l’apprentissage compétentiel et instrumenté de la géométrie à l’école secondaire. In: Bastiaens, T., Carliner, S. (eds.) Proceedings of E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007. No. 428–435, Association for the Advancement of Computing in Education (AACE), Chesapeake (2007)

  61. Richter-Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cinderella. Springer, Berlin (1999)

    MATH  Google Scholar 

  62. Santiago, E., Hendriks, M., Kreis, Y., Kortenkamp, U., Marquès, D.: i2g Common file format final version. Tech. Rep. D3.10, The Intergeo Consortium (2010). http://i2geo.net/xwiki/bin/view/I2GFormat/

  63. Santos, V., Quaresma, P., Campos, H., Marić, M.: Web Geometry Laboratory: case studies in Portugal and Serbia. In: Interactive Learning Environments, pp. 1–19 (Dec 2016) (online). doi:10.1080/10494820.2016.1258715

  64. Shute, V., Psotka, J.: The handbook of research for educational communications and technology, chap. In: Intelligent Tutoring Systems: Past, Present, and Future, 1st edn, pp. 570–600. The Association for Educational Communications and Technology (2001)

  65. Sinclair, N., Bartolini Bussi, M.G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., Owens, K.: Recent research on geometry education: an ICME-13 survey team report. ZDM Math. Educ. 48(5), 691–719 (2016). doi:10.1007/s11858-016-0796-6

    Article  Google Scholar 

  66. Stojanović, S., Narboux, J., Bezem, M., Janičić, P.: A vernacular for coherent logic. In: Watt, S., Davenport, J., Sexton, A., Sojka, P., Urban, J. (eds.) Intelligent Computer Mathematics, Lecture Notes in Computer Science, vol. 8543, pp. 388–403. Springer International Publishing (2014). doi:10.1007/978-3-319-08434-3_28

  67. Stojanovic, S., Pavlovic, V., Janicic, P.: A coherent logic based geometry theorem prover capable of producing formal and readable proofs. In: Schreck, P., Narboux, J., Richter-Gebert, J. (eds.) Automated Deduction in Geometry, pp. 201–220. Springer, Berlin, Heidelberg (2010)

  68. Summers, J., Beretvas, S., Svinicki, M., Gorin, J.: Evaluating collaborative learning and community. J. Exp. Educ. 73, 165–188 (2005)

    Article  Google Scholar 

  69. Triantafillou, E., Pomportsis, A., Demetriadis, S.: The design and the formative evaluation of an adaptive educational system based on cognitive styles. Comput. Educ. 41(1), 87–103 (2003). http://www.sciencedirect.com/science/article/pii/S0360131503000319

  70. Wang, D.: Reasoning about geometric problems using an elimination method. In: Pfalzgraf, J., Wang, D. (eds.) Automated Pratical Reasoning, pp. 147–185. Springer, New York (1995)

    Chapter  Google Scholar 

  71. Wang, D., Chen, X., An, W., Jiang, L., Song, D.: Opengeo: an open geometric knowledge base. In: Hong, H., Yap, C. (eds.) Mathematical Software—ICMS 2014, Lecture Notes in Computer Science, vol. 8592, pp. 240–245. Springer, Berlin (2014). doi:10.1007/978-3-662-44199-2_38

  72. Wang, K., Su, Z.: Automated geometry theorem proving for human-readable proofs. In: Proceedings of the 24th International Conference on Artificial Intelligence, pp. 1193–1199. IJCAI’15, AAAI Press (2015). http://dl.acm.org/citation.cfm?id=2832249.2832414

  73. Wu, W.: Automated Theorem Proving: After 25 Years, vol. 29, chap. On the Decision Problem and the Mechanization of Theorem Proving in Elementary Geometry, pp. 213–234. American Mathematical Society (1984)

  74. Ye, Z., Chou, S.C., Gao, X.S.: An introduction to java geometry expert. In: Sturm, T., Zengler, C. (eds.) Automated Deduction in Geometry, Lecture Notes in Computer Science, vol. 6301, pp. 189–195. Springer, Berlin (2011). doi:10.1007/978-3-642-21046-4_10, jGEX

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quaresma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaresma, P. Towards an Intelligent and Dynamic Geometry Book. Math.Comput.Sci. 11, 427–437 (2017). https://doi.org/10.1007/s11786-017-0302-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-017-0302-8

Keywords

Mathematics Subject Classification

Navigation