Skip to main content
Log in

An Improved Bernstein Global Optimization Algorithm for MINLP Problems with Application in Process Industry

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We present an improved Bernstein global optimization algorithm to solve polynomial mixed-integer nonlinear programming (MINLP) problems. The algorithm is of branch-and-bound type, and uses the Bernstein form of the polynomials for the global optimization. The new ingredients in the algorithm include a modified subdivision procedure, a vectorized Bernstein cut-off test and a new branching rule for the decision variables. The performance of the improved algorithm is tested and compared with earlier reported Bernstein global optimization algorithm (to solve polynomial MINLPs) and with several state-of-the-art MINLP solvers on a set of 19 test problems. The results of the tests show the superiority of the improved algorithm over the earlier reported Bernstein algorithm and the state-of-the-art solvers in terms of the chosen performance metrics. Similarly, efficacy of the improved algorithm in handling a real-world MINLP problem is brought out via a trim-loss minimization problem from the process industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Androulakis I.P., Maranas C.D., Floudas C.A.: α-BB: a global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belotti P., Lee J., Liberti L., Margot F., Wächter A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Method Softw. 24(4–5), 597–634 (2009)

    Article  MATH  Google Scholar 

  4. Bonami P., Biegler L.T., Conn A.R., Cornuéjols G., Grossmann I.E., Laird C.D., Lee J., Lodi A., Margot F., Sawaya N., Wächter A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 5(2), 186–204 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Burer S., Letchford A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

    MathSciNet  Google Scholar 

  6. Bussieck M.R., Drud A.S., Meeraus A.: MINLPLibA collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duran M.A., Grossmann I.E.: An outer approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program 36(3), 307–339 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fletcher R., Leyffer S.: Solving mixed-integer programs by outer approximation. Math. Program 66(1–3), 327–349 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  10. GAMS Development Corporation: GAMS—The Solver Manuals. GAMS Development Corporation, Washington, DC (2009)

  11. Garczarczyk, Z.A.: Parallel schemes of computation for Bernstein coefficients and their application. In: Proceedings of the International Conference on Parallel Computing in Electrical Engineering, Warsaw, pp. 334–337 (2002)

  12. Garloff, J.: Convergent bounds for range of multivariate polynomials, in interval mathematics. In: Nickel, K. (ed.) Lecturer Notes in Computer Science, vol. 212. Springer, Berlin, pp. 37–56 (1985)

  13. Garloff J.: The Bernstein algorithm. Interval Comput. 6(2), 154–168 (1993)

    MathSciNet  Google Scholar 

  14. Geoffrion A.M.: A generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  15. Goux J.P., Leyffer S.: Solving large MINLPs on computational grids. Optim. Eng. 3(3), 327–346 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gropp, W., More, J.: Optimization environments and the NEOS server. In: Buhmann, M.D., Iserles, A. (eds.) Approximation Theory and Optimization. Cambridge University Press, Cambridge, pp. 167–182 (1997)

  17. Gupta O.K., Ravindran A.: Branch and bound experiments in convex nonlinear integer programming. Manag. Sci. 31(12), 1533–1546 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Harjunkoski I., Westerlund T., Pörn R.: Numerical and environmental considerations on a complex industrial mixed integer non-linear programming (MINLP) problem. Comput. Chem. Eng. 23(10), 1545–1561 (1999)

    Article  Google Scholar 

  19. Harjunkoski I., Westerlund T., Pörn R., Skrifvars H.: Different transformations for solving non-convex trim-loss problems by MINLP. Eur. J. Oper. Res. 105(3), 594–603 (1998)

    Article  MATH  Google Scholar 

  20. Kuipers, K.: Branch-and-bound solver for mixed-integer nonlinear optimization problems. In: MATLAB Central for File Exchange (2003)

  21. Leyffer, S.: User manual for INLP_BB. In: University of Dundee Numerical Analysis Report NA/XXX (1999)

  22. Linderoth J.T., Savelsbergh M.W.P.: A computational study of search strategies for mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. LINGO User’s Manual. Lindo systems, Inc., Chicago IL (2009)

  24. Mathworks: The Mathworks Inc., MATLAB version 7.1 (R14). Mathworks, Natick (2005)

  25. Nataraj P.S.V., Arounassalame M.: A new subdivision algorithm for the Bernstein polynomial approach to global optimization. IJAC 4(4), 342–352 (2007)

    Google Scholar 

  26. Nataraj P.S.V., Arounassalame M.: An algorithm for constrained global optimization of multivariate polynomials using the Bernstein form and John optimality conditions. Opsearch 46(2), 133–152 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nataraj P.S.V., Arounassalame M.: Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm. J. Global Optim. 49(2), 185–212 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nowak I.: Relaxation and Decomposition Methods for Mixed-Integer Nonlinear Programming. Birkhäuser Verlag, Berlin (2005)

    MATH  Google Scholar 

  29. Patil B.V., Nataraj P.S.V., Bhatiya S.: Global optimization of mixed-integer nonlinear (polynomial) programming problems: the Bernstein polynomial approach. Computing 94(2–4), 325–343 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Quesada I., Grossmann I.E.: An LP/NLP based branch and bound algorithm for convex MINLP optimization problems. Comput. Chem. Eng. 16(10–11), 937–947 (1992)

    Article  Google Scholar 

  31. Ray S., Nataraj P.S.V.: An efficient algorithm for range computation of polynomials using the Bernstein form. J. Global Optim. 45(3), 403–426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sanchez-Reyes J.: Algebraic manipulation in the Bernstein form made simple via convolutions. Comput. Aided Des. 35(10), 959–967 (2003)

    Article  MATH  Google Scholar 

  33. Schluter, M., Gerdts, M., Ruckmann, J.J.: MIDACO: New Global Optimization Software for MINLP. http://www.midaco-solver.com/about.html (2012). Accessed 20 Dec 2012

  34. SCICON Ltd.: SCICONIC User Guide Version 1.40. Milton Keynes, UK (1989)

  35. Smith A.P.: Fast construction of constant bound functions for sparse polynomials. J. Global Optim. 43(2–3), 445–458 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stahl, V.: Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations. PhD thesis, Johannes Kepler University, Linz (1995)

  37. Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming : Theory, Algorithms, Software and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  Google Scholar 

  38. Telesa J.P., Castro P.M., Matos H.A.: Univariate parameterization for global optimization of mixed-integer polynomial problems. Eur. J. Oper. Res. 229(3), 613–625 (2013)

    Article  Google Scholar 

  39. Vecchietti A., Grossmann I.E.: LOGMIP: a disjunctive 0–1 nonlinear optimizer for process system models. Comput. Chem. Eng. 21, S427–S432 (1997)

    Google Scholar 

  40. Westerlund T., Pettersson F.: A extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995)

    Article  Google Scholar 

  41. Zettler M., Garloff J.: Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion. IEEE Trans. Autom. Control 43(3), 425–431 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Zhu W.: A provable better branch and bound method for a nonconvex integer quadratic programming problem. J. Comput. Syst. Sci. 70(1), 107–117 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagyesh V. Patil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, B.V., Nataraj, P.S.V. An Improved Bernstein Global Optimization Algorithm for MINLP Problems with Application in Process Industry. Math.Comput.Sci. 8, 357–377 (2014). https://doi.org/10.1007/s11786-014-0198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0198-5

Keywords

Mathematics Subject Classification

Navigation