Mathematics in Computer Science

, Volume 9, Issue 1, pp 5–22 | Cite as

HOL(y)Hammer: Online ATP Service for HOL Light

Open Access
Article

Abstract

HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given.

Mathematics Subject Classification

68T15 68T05 68T20 68T35 

Keywords

Automated theorem proving Interactive theorem proving Machine learning Formal proof assistants Large-theory automated reasoning HOL light 

References

  1. 1.
    Akbarpour B., Paulson L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alama J., Brink K., Mamane L., Urban J.: Large formal wikis: Issues and solutions. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds) Calculemus/MKM, volume 6824 of LNCS, pp. 133–148. Springer, Berlin (2011)Google Scholar
  3. 3.
    Alama J., Heskes T., Kühlwein D., Tsivtsivadze E., Urban J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2), 191–213 (2014)CrossRefGoogle Scholar
  4. 4.
    Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS, volume 7795 of Lecture Notes in Computer Science, pp. 493–507. Springer, Berlin (2013)Google Scholar
  5. 5.
    Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-1 polymorphism. In: Bonacina, M.P. (ed.) Proceedings of Automated Deduction –CADE-24–24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9–14. Lecture Notes in Computer Science, vol. 7898, pp. 414–420. Springer (2013)Google Scholar
  6. 6.
    Carlson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Technical Report UIUCDCS-R-99-2101, UIUC Computer Science Department, 5 (1999)Google Scholar
  7. 7.
    de Moura L.M., Bjørner N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J. (eds) TACAS, volume 4963 of LNCS, pp. 337–340. Springer, Berlin (2008)Google Scholar
  8. 8.
    Dudani S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6(4), 325–327 (1976)CrossRefGoogle Scholar
  9. 9.
    Van Gelder, A., Sutcliffe, G.: Extending the TPTP language to higher-order logic with automated parser generation. In: Furbach, U., Shankar, N. (eds.) Proceedings of Third International Joint Conference on Automated Reasoning, IJCAR 2006, Seattle, WA, USA, August 17–20. Lecture Notes in Computer Science, vol. 4130, pp. 156–161. Springer (2006)Google Scholar
  10. 10.
    Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.-F. (eds.) Mathematics, Algorithms, Proofs, number 05021 in Dagstuhl Seminar Proceedings, pp. 1–11, Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, GermanyGoogle Scholar
  11. 11.
    John H.: HOL Light: A tutorial introduction. In: Srivas, M.K., Camilleri, A.J. (eds) FMCAD, volume 1166 of LNCS, pp. 265–269. Springer, Berlin (1996)Google Scholar
  12. 12.
    Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M., Slaney, J.K. (eds.): Proceedings of the 13th International Conference on Automated Deduction, number 1104 in LNAI, pp. 313–327. Springer (1996)Google Scholar
  13. 13.
    Hendriks M., Kaliszyk C., van Raamsdonk F., Wiedijk F.: Teaching logic using a state-of-the-art proof assistant. Acta Didact. Napoc. 3(2), 35–48 (2010)Google Scholar
  14. 14.
    Hoder K., Voronkov A.: Sine qua non for large theory reasoning. In: Bjørner, N., Sofronie-Stokkermans, V. (eds) CADE, volume 6803 of LNCS, pp. 299–314. Springer, Berlin (2011)Google Scholar
  15. 15.
    Kaliszyk, C.: Web interfaces for proof assistants. In: Autexier, S., Benzmüller, C. (eds.): Proceedings of the Workshop on User Interfaces for Theorem Provers (UITP’06), volume 174[2] of ENTCS, pp. 49–61 (2007)Google Scholar
  16. 16.
    Kaliszyk, C., Krauss, A.: Scalable LCF-style proof translation. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Proceedings of the 4th International Conference on Interactive Theorem Proving (ITP’13), volume 7998 of LNCS, pp. 51–66. Springer (2013)Google Scholar
  17. 17.
    Kaliszyk, C., Urban, J.: Automated reasoning service for HOL light. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Proceedings of Intelligent Computer Mathematics–MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8–12. Lecture Notes in Computer Science, vol. 7961, pp. 120–135. Springer (2013)Google Scholar
  18. 18.
    Kaliszyk, C., Urban, J.: Lemma mining over HOL light. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.), LPAR, volume 8312 of Lecture Notes in Computer Science, pp. 503–517. Springer (2013)Google Scholar
  19. 19.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR, arXiv:1310.2805 (2013)
  20. 20.
    Kaliszyk, C., Urban, J.: PRocH: Proof reconstruction for HOL Light. In: Bonacina [6], pp. 267–274Google Scholar
  21. 21.
    Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013, volume 14 of EPiC Series, pp. 87–95. EasyChair (2013)Google Scholar
  22. 22.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reason. (2014). doi:10.1007/s10817-014-9303-3
  23. 23.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV, volume 8044 of Lecture Notes in Computer Science, pp. 1–35. Springer (2013)Google Scholar
  24. 24.
    Kühlwein D., van Laarhoven T., Tsivtsivadze E., Urban J., Heskes T.: Overview and evaluation of premise selection techniques for large theory mathematics. In: Gramlich, B., Miller, D., Sattler, U. (eds) IJCAR, volume 7364 of LNCS, pp. 378–392. Springer, Berlin (2012)Google Scholar
  25. 25.
    Meng J., Paulson L.C.: Translating higher-order clauses to first-order clauses. J. Autom. Reason. 40(1), 35–60 (2008)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Paulson, L.C., Blanchette, J.: Three years of experience with Sledgehammer, a practical link between automated and interactive theorem provers. In: 8th IWIL, 2010. Invited talkGoogle Scholar
  27. 27.
    Paulson L.C., Susanto K.W.: Source-level proof reconstruction for interactive theorem proving. In: Schneider, K., Brandt, J. (eds) TPHOLs, volume 4732 of LNCS, pp. 232–245. Springer, Berlin (2007)Google Scholar
  28. 28.
    Pitts A.: The HOL logic. In: Gordon, M.J.C., Melham, T.F. (eds) Introduction to HOL: A Theorem Proving Environment for Higher Order Logic, Cambridge University Press, Cambridge (1993)Google Scholar
  29. 29.
    Schulz S.: E - A Brainiac Theorem Prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  30. 30.
    Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.) Proceedings of Third International Joint Conference on Automated Reasoning, IJCAR 2006, Seattle, WA, USA, August 17–20. Lecture Notes in Computer Science, vol. 4130, pp. 67–81. Springer (2006)Google Scholar
  31. 31.
    Tankink, C., Kaliszyk, C., Urban, J., Geuvers, H.: Formal mathematics on display: a wiki for Flyspeck. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) Proceedings of Intelligent Computer Mathematics–MKM, Calculemus, DML, and Systems and Projects 2013, Held as Part of CICM 2013, Bath, UK, July 8–12. Lecture Notes in Computer Science, vol. 7961, pp. 152–167. Springer (2013)Google Scholar
  32. 32.
    Urban J.: MoMM—fast interreduction and retrieval in large libraries of formalized mathematics. Int. J. Artif. Intell. Tools 15(1), 109–130 (2006)CrossRefGoogle Scholar
  33. 33.
    Urban, J.: An overview of methods for large-theory automated theorem proving (Invited Paper). In: Höfner, P., McIver, A., Struth, G. (eds.) ATE Workshop, volume 760 of CEUR Workshop Proceedings, pp. 3–8. CEUR-WS.org (2011)Google Scholar
  34. 34.
    Urban, J.: Content-based encoding of mathematical and code libraries. In: Lange, C. Urban, J. (eds.) Proceedings of the ITP 2011 Workshop on Mathematical Wikis (MathWikis), number 767 in CEUR Workshop Proceedings, pp. 49–53, Aachen (2011)Google Scholar
  35. 35.
    Urban, J.: Parallelizing Mizar. CoRR,arXiv:1206.0141 (2012)
  36. 36.
    Urban, J.: BliStr: The Blind Strategymaker. CoRR, arXiv:1301.2683 (2013)
  37. 37.
    Urban J., Rudnicki P., Sutcliffe G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50, 229–241 (2013)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Urban, J., Sutcliffe, G.: Automated reasoning and presentation support for formalizing mathematics in Mizar. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC/MKM/Calculemus, volume 6167 of LNCS, pp. 132–146. Springer (2010)Google Scholar
  39. 39.
    Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1—machine learner for automated reasoning with semantic guidance. In: Armando, A., Baumgartner, P., Dowek, G. (eds) IJCAR, volume 5195 of LNCS, pp. 441–456. Springer (2008)Google Scholar
  40. 40.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP: machine learning connection prover. In Brünnler, K., Metcalfe, G. (eds.) TABLEAUX, volume 6793 of LNCS, pp. 263–277. Springer (2011)Google Scholar
  41. 41.
    Vinge, V.: A Fire Upon the Deep. Tor Books, New York City (1992)Google Scholar
  42. 42.
    Worden, L., WorkingWiki: a MediaWiki-based platform for collaborative research. In: Lange, C. Urban, J. (eds.) ITP Workshop on Mathematical Wikis (MathWikis), number 767 in CEUR Workshop Proceedings, pp. 63–73, Aachen (2011)Google Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.University of InnsbruckInnsbruckAustria
  2. 2.Radboud UniversityNijmegenThe Netherlands

Personalised recommendations