Skip to main content
Log in

Collaborative Verification-Driven Engineering of Hybrid Systems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e. g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (1) graphical (UML) and textual modeling of hybrid systems, (2) exchanging and comparing models and proofs, and (3) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akbarpour B., Paulson L.C.: MetiTarski: an automatic theorem prover for real-valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S., (eds.) Proceedings of the 11th International Conference on Embedded Software (EMSOFT), pp. 273–278. ACM (2011)

  3. Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.-H., Nicollin X., Olivero A., Sifakis J., Yovine S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

    Article  MATH  Google Scholar 

  4. Anda B., Hansen K., Gullesen I., Thorsen H.K.: Experiences from introducing UML-based development in a large safety-critical project. Empir. Softw. Eng. 11(4), 555–581 (2006)

    Article  Google Scholar 

  5. Bajaj, M., Scott, A., Deming, D., Wickstrom, G., Spain, M.D., Zwemer, D., Peak, R.: Maestro—a model-based systems engineering environment for complex electronic systems. In: Proceedings of the 22nd Annual INCOSE International Symposium. INCOSE, Rome (2012)

  6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0 (2012). http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf (last accessed 2013-01-09)

  7. Baumgartner, N., Mitsch, S., Müller, A., Salfinger, A., Retschitzegger, W., Schwinger, W.: A tour of BeAware: a situation awareness framework for control centers. Inf. Fusion (2014). doi:10.1016/j.inffus.2014.01.008

  8. Belta, C., Ivancic, F., (eds.): Hybrid Systems: Computation and Control (part of CPS Week 2013), HSCC’13, ACM, Philadelphia (2013)

  9. Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The HybridUML profile for UML 2.0. STTT 8(2), 167–176 (2006)

  10. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing with explicit assumptions. In: Giannakopoulou, D., Méry, D. (eds.) FM, Volume 7436 of LNCS, pp. 132–146. Springer, Berlin (2012)

  11. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS, Lecture Notes in Computer Science, vol. 7795, pp. 93–107. Springer, Berlin (2013)

  12. Collins, P., Lygeros, J.: Computability of finite-time reachable sets for hybrid systems. In: 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 4688–4693. IEEE (2005)

  13. Craigen D., Gerhart S.L., Ralston T.: Formal methods reality check: industrial usage. IEEE Trans. Softw. Eng. 21(2), 90–98 (1995)

    Article  Google Scholar 

  14. Davenport J.H., Heintz J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5(1–2), 29–35 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS, Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer, Berlin (2008)

  16. De Schutter, B., Heemels, W., Lunze, J., Prieur, C.: Survey of modeling, analysis, and control of hybrid systems. In: Lunze, J., Lamnabhi-Lagarrigue, F. (eds.) Handbook of Hybrid Systems Control—Theory, Tools, Applications, chap. 2, pp. 31–55. Cambridge University Press, Cambridge (2009)

  17. Derler P., Lee E.A., Sangiovanni-Vincentelli A.: Modeling cyber-physical systems. Proc. IEEE 100(1), 13–28 (2012)

    Article  Google Scholar 

  18. Deshpande, A., Göllü, A., Varaiya, P.: Shift: A formalism and a programming language for dynamic networks of hybrid automata. In: Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S., (eds.) Hybrid Systems, Lecture Notes in Computer Science, vol. 1273, pp. 113–133. Springer, Berlin (1996)

  19. Faber J., Linker S., Olderog E.-R., Quesel J.-D.: Syspect—modelling, specifying, and verifying real-time systems with rich data. Int. J. Softw. Inf. 5(1–2), 117–137 (2011)

    Google Scholar 

  20. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L., (eds.) Hybrid Systems: Computation and Control, 8th International Workshop, HSCC 2005, Zurich, Proceedings, LNCS, vol. 3414, pp. 258–273. Springer, Berlin (2005)

  21. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Ganesh Gopalakrishnan, S.Q. (ed.) CAV, LNCS. Springer, Berlin (2011)

  22. Gokhale A.S., Balasubramanian K., Krishna A.S., Balasubramanian J., Edwards G., Deng G., Turkay E., Parsons J., Schmidt D.C.: Model driven middleware: a new paradigm for developing distributed real-time and embedded systems. Sci. Comput. Program. 73(1), 39–58 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goswami, D., Schneider, R., Masrur, A., Lukasiewycz, M., Chakraborty, S., Voit, H., Annaswamy, A.: Challenges in automotive cyber-physical systems design. In: ICSAMOS, pp. 346–354. IEEE (2012)

  24. Gowers T., Nielsen M.: Massively collaborative mathematics. Nature 461, 879–881 (2009)

    Article  Google Scholar 

  25. Hales T.C., Harrison J., McLaughlin S., Nipkow T., Obua S., Zumkeller R.: A revision of the proof of the Kepler conjecture. Discrete Comput. Geom. 44(1), 1–34 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hause, M.C., Thom, F.: An integrated MDA approach with SysML and UML. In: Proceedings of the 13th International Conference on Engineering of Complex Computer Systems, ICECCS ’08, pp. 249–254. IEEE Computer Society, Washington (2008)

  27. Henzinger, T.A., Jhala, R., Majumdar, R., Sanvido, M.A.A.: Extreme model checking. In: Dershowitz, N., (ed.) Verification: Theory and Practice, Essays Dedicated to Zohar Manna on the Occasion of His 64th Birthday, LNCS, vol. 2772, pp. 332–358. Springer, Berlin (2003)

  28. Hitz, M., Kappel, G., Kapsammer, E., Retschitzegger, W.: UML @ Work. dpunkt (2005)

  29. Jouault F., Allilaire F., Bézivin J., Kurtev I.: ATL: a model transformation tool. Sci. Comput. Program. 72(1–2), 31–39 (2008)

    Article  MATH  Google Scholar 

  30. Kent, S.: Model driven engineering. In: Butler M.J., Petre L., Sere K., (eds.) IFM, LNCS, vol. 2335. pp. 286–298. Springer, Berlin (2002)

  31. Kerber, M., Lange, C., Rowat, C., (eds.): Enabling Domain Experts to use Formalised Reasoning—Symposium AISB, Do-Form 2013, Exeter. Proceedings. AISB (2013)

  32. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal verification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220. ACM, New York (2009)

  33. Kokar M.M., Matheus C.J., Baclawski K.: Ontology-based situation awareness. Int. J. Inf. Fusion 10(1), 83–98 (2009)

    Article  Google Scholar 

  34. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model matching: An analysis of approaches to support model differencing. In: Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software Models, CVSM ’09, pp. 1–6. IEEE Computer Society, Washington (2009)

  35. Kordon, F., Hugues, J., Renault, X.: From model driven engineering to verification driven engineering. In: Proc. of the 6th IFIP Int. Workshop on Software Technologies for Embedded and Ubiquitous Systems, pp. 381–393. Springer, Berlin (2008)

  36. Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In: Belta and Ivancic [8]

  37. Kupferman, O., Vardi, M.Y.: Modular model checking. In: Revised Lectures from the International Symposium on Compositionality: The Significant Difference, COMPOS’97, pp. 381–401. Springer, London (1998)

  38. Lavazza, L., Quaroni, G., Venturelli, M.: Combining UML and formal notations for modelling real-time systems. In: ESEC/SIGSOFT FSE, pp. 196–206. ACM (2001)

  39. Lee I., Sokolsky O., Chen S., Hatcliff J., Jee E., Kim B., King A.L., Mullen-Fortino M., Park S., Roederer A., Venkatasubramanian K.K.: Challenges and research directions in medical cyber-physical systems.. Proc. IEEE 100(1), 75–90 (2012)

    Article  Google Scholar 

  40. Liu J., Liu Z., He J., Mallet F., Ding Z.: Hybrid MARTEstatecharts. Front. Comput. Sci. 7(1), 95–108 (2013)

    Article  MathSciNet  Google Scholar 

  41. Loos, S.M., Platzer, A.: Safe intersections: at the crossing of hybrid systems and verification. In: Yi, K. (ed.) ITSC, pp. 1181–1186 (2011)

  42. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now formally verified. In: FM, LNCS, vol. 6664, pp. 42–56. Springer, Berlin (2011)

  43. Loos, S.M., Renshaw, D., Platzer, A.: Formal verification of distributed aircraft controllers. In: Belta and Ivancic [8]

  44. Mallet, F., de Simone, R.: MARTE: a profile for RT/E systems modeling, analysis—and simulation? In: Molnár, S., Heath, J.R., Dalle, O., Wainer, G.A. (eds.) SimuTools, p. 43. ICST (2008)

  45. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous robotic ground vehicles. In: Robotics: Science and Systems (2013)

  46. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control. In: Lu, C. (ed.) Proc. of the 2nd Int. Conference on Cyber-Physical Systems (ICCPS), pp. 171–180. IEEE (2012)

  47. Mitsch S., Passmore, G.O., Platzer, A.: A vision of collaborative verification-driven engineering of hybrid systems. In: Kerber et al. [31], pp. 8–17

  48. Mitsch, S., Quesel, J.-D., Platzer, A.: Refactoring, refinement, and reasoning—a logical characterization for hybrid systems. In: FM, LNCS. Springer, Berlin (2014, to appear)

  49. Mostowski, W.: The KeY syntax. In: Beckert, B., Hähnle, R., Schmitt, P.H., (eds.) Verification of Object-Oriented Software. The KeY Approach, Lecture Notes in Computer Science, vol. 4334, pp. 599–626. Springer, Berlin (2007)

  50. Mota E., Clarke E.M., Groce A., Oliveira W., Falcão M., Kanda J.: VeriAgent: an approach to integrating UML and formal verification tools.. Electr. Notes Theor. Comput. Sci. 95, 111–129 (2004)

    Article  Google Scholar 

  51. Niemueller, T., Ewert, D., Reuter, S., Karras, U., Ferrein, A., Jeschke, S., Lakemeyer, G.: Towards benchmarking cyber-physical systems in factory automation scenarios. In: Timm, I.J., Thimm, M., (eds.) KI, Lecture Notes in Computer Science, vol. 8077. Springer, Berlin, pp. 296–299 (2013)

  52. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proc. of the 2nd Int. Conf. on Formal Ontology in Information Systems (FOIS ’01), pp. 2–9. ACM, Ogunquit (2001)

  53. Object Management Group. OMG object constraint language (OCL). Technical Report formal/2012-01-01, OMG (2012)

  54. Passmore, G.O.: Combined Decision Procedures for Nonlinear Arithmetics, Real and Complex. PhD thesis, University of Edinburgh (2011)

  55. Passmore, G.O., Paulson, L.C., de Moura, L. M.: Real algebraic strategies for MetiTarski proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka, P., Wenzel, M., Sorge, V., (eds.) AISC/MKM/Calculemus, LNCS, vol. 7362, pp. 358–370. Springer, Berlin (2012)

  56. Passmore, G.O., Platzer, A., Zawadzki, E., Avigad, J.: Geometric relevance filtering for real closed field arithmetic (2013, in preparation)

  57. Platzer A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  58. Platzer A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20(1), 309–352 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  59. Platzer A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)

    Book  Google Scholar 

  60. Platzer, A.: The complete proof theory of hybrid systems. In: LICS, pp. 541–550. IEEE (2012)

  61. Platzer, A.: Logics of dynamical systems. In: LICS, pp. 13–24. IEEE (2012)

  62. Platzer A., Clarke E.M.: Computing differential invariants of hybrid systems as fixedpoints. Formal Methods Syst. Design 35(1), 98–120 (2009)

    Article  MATH  Google Scholar 

  63. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneuvers: a case study. In: Cavalcanti, A., Dams, D. (eds.) FM, LNCS, vol. 5850, pp. 547–562. Springer, Berlin (2009)

  64. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR, LNCS, vol. 5195, pp. 171–178. Springer, Berlin (2008)

  65. Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM, LNCS, vol. 5885, pp. 246–265. Springer, Berlin (2009)

  66. Razali, R., Snook, C.F., Poppleton, M.R.: Comprehensibility of UML-based formal model: a series of controlled experiments. In: Proceedings of the 1st ACM International Workshop on Empirical Assessment of Software Engineering Languages and Technologies: Held in Conjunction with the 22Nd IEEE/ACM International Conference on Automated Software Engineering (ASE), WEASELTech’07, pp. 25–30. ACM, New York (2007)

  67. Reiter R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Cambridge (2001)

    Google Scholar 

  68. Schäfer, W., Wehrheim, H.: Model-driven development with Mechatronic UML. In Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-Driven Engineering, Lecture Notes in Computer Science, vol. 5765, pp. 533–554. Springer, Berlin (2010)

  69. Schmidt D.C.: Guest editor’s introduction: model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)

    Article  Google Scholar 

  70. Snook C.F., Butler M.J.: UML-B: formal modeling and design aided by UML. ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

    Article  Google Scholar 

  71. Sridhar S., Hahn A., Govindarasu M.: Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2012)

    Article  Google Scholar 

  72. Tintarev, N., Oren, N., Deemter, K.V., Kutlak, R., Green, M., Masthoff, J., Vasconcelos, W.: SAsSy—scrutable autonomous systems. In: Kerber et al. [31], pp. 1–3

  73. Tomlin C., Pappas G., Sastry S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems.. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  74. Woodcock, J., Larsen, P. G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Mitsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsch, S., Passmore, G.O. & Platzer, A. Collaborative Verification-Driven Engineering of Hybrid Systems. Math.Comput.Sci. 8, 71–97 (2014). https://doi.org/10.1007/s11786-014-0176-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-014-0176-y

Keywords

Mathematics Subject Classification (2010)

Navigation