Formal Analysis of Optical Systems


Optical systems are becoming increasingly important by resolving many bottlenecks in today’s communication, electronics, and biomedical systems. However, given the continuous nature of optics, the inability to efficiently analyze optical system models using traditional paper-and-pencil and computer simulation approaches sets limits especially in safety-critical applications. In order to overcome these limitations, we propose to employ higher-order-logic theorem proving as a complement to computational and numerical approaches to improve optical model analysis in a comprehensive framework. The proposed framework allows formal analysis of optical systems at four abstraction levels, i.e., ray, wave, electromagnetic, and quantum.

This is a preview of subscription content, access via your institution.


  1. 1

    Allen, L., Angel, R., Rodney, G.A., Mangus, J.D., Shannon, R.R. , Spoelhof, Ch.P.: The Hubble Space Telescope Optical System Failure Report. Technical Report, NASA TM-103443, Washington, DC, November 1990

  2. 2

    Formal analysis of optical systems, Hardware Verification Group, Concordia University. (2014). Accessed 20 Mar 2014

  3. 3

    Mathematica. (2014). Accessed 20 Mar 2014

  4. 4

    Mathlink Link. (2014). Accessed 20 Mar 2014

  5. 5

    Matlab–codev toolkit. (2014). Accessed 20 Mar 2014

  6. 6

    Matlab–zemax toolkit. (2014). Accessed 20 Mar 2014

  7. 7

    OpenMath Content Dictionaries. (2014). Accessed 20 Mar 2014

  8. 8

    OpenMath Content Dictionary: linalgeig1. (2014). Accessed 20 Mar 2014

  9. 9

    Overview of OpenMath. (2014). Accessed 20 Mar 2014

  10. 10

    Rezonator. (2014). Accessed 20 Mar 2014

  11. 11

    Source Code of the Phrasebook Mathematica-OpenMath. (2014). Accessed 20 Mar 2014

  12. 12

    Zemax. (2014). Accessed 20 Mar 2014

  13. 13

    Baaske M., Vollmer F.: Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. Chem. Phys. Chem. 13(2), 427–436 (2012)

    Article  Google Scholar 

  14. 14

    Ballarin, C., Homann, K., Calmet, J.: Theorems and algorithms: an interface between Isabelle and Maple. In: Levelt, A.H.M. (ed.) Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC ’95, pp. 150–157. ACM, New York, USA (1995)

  15. 15

    Born M., Wolf E.: Principles of Optics Electromagnetic: Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge, UK (1999)

    Book  Google Scholar 

  16. 16

    Buchberger B., Craciun A., Jebelean T., Kovacs L., Kutsia T., Nakagawa K., Piroi F., Popov N., Robu J., Rosenkranz M., Windsteiger W.: Theorema: towards computer-aided mathematical theory exploration. J. Appl. Logic 4(4), 470–504 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. 17

    Caprotti, O., Cohen, A.M.: Connecting proof checkers and computer algebra using OpenMath. In: Bertot, Y., Dowek, G., Thery, L., Hirschowitz, A., Paulin, C. (eds.) Theorem Proving in Higher Order Logics. Lecture Notes in Computer Science, vol. 1690, pp. 109–112. Springer, Berlin, Heidelberg (1999)

  18. 18

    Caprotti O., Cohen A.M., Riem M.: JAVA phrasebooks for computer algebra and automated deduction. SIGSAM Bull. 34, 33–37 (2000)

    Article  Google Scholar 

  19. 19

    Chen K.J., Chen H.C., Tsai K.A., et. al.: Light-emitting devices: resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method. Adv. Funct. Mater. 22(24), 5137–5137 (2012)

    Article  Google Scholar 

  20. 20

    Cheng Q., Cui T.J., Zhang C.: Waves in planar waveguide containing chiral nihility metamaterial. Opt. Commun. 274, 317–321 (2007)

    Article  Google Scholar 

  21. 21

    Dirac P.A.M.: The fundamental equations of quantum mechanics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 109(752), 642–653 (1925)

    Article  MATH  Google Scholar 

  22. 22

    Feynman R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  23. 23

    Garg R.: Analytical and Computational Methods in Electromagnetics. Artech House, Norwood, MA, USA (2008)

    MATH  Google Scholar 

  24. 24

    Gordon M.J.C., Melham T.F.: Introduction to HOL: A Theorem Proving Environment for Higher-Order Logic. Cambridge Press, Cambridge (1993)

    MATH  Google Scholar 

  25. 25

    Griffiths D.J.: Introduction to Electrodynamics. Pearson Prentice Hall, Upper Saddle River, NJ, USA (1999)

    Google Scholar 

  26. 26

    Griffiths D.J.: Introduction to Quantum Mechanics. Pearson Prentice Hall, Upper Saddle River, NJ, USA (2005)

    Google Scholar 

  27. 27

    Hadfield R.H.: Single-Photon Detectors for Optical Quantum Information Applications. Nat. Photonics 3, 696–705 (2009)

    Article  Google Scholar 

  28. 28

    Hales, T.C.: Introduction to the flyspeck project. In: Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl Seminar Proceedings (2005)

  29. 29

    Harrison J.: HOL light: a tutorial introduction. In: Formal Methods in Computer-Aided Design, volume 1166 of LNCS, pp. 265–269. Springer (1996)

  30. 30

    Harrison, J.: Theorem Proving with the Real Numbers (Distinguished dissertations). Springer, Verlag (1998)

  31. 31

    Harrison, J.: A HOL theory of Euclidean space. In: Theorem Proving in Higher Order Logics, volume 3603 of LNCS, pp. 114–129. Springer (2005)

  32. 32

    Harrison, J.: Formalizing basic complex analysis. In: From Insight to Proof: Festschrift in Honour of Andrzej Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pp. 151–165. University of Białystok (2007)

  33. 33

    Harrison J.: Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, Cambridge, UK (2009)

    Book  MATH  Google Scholar 

  34. 34

    Harrison, J.: HOL light: an overview. In: Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in Computer Science, pp. 60–66. Springer (2009)

  35. 35

    Harrison J., Théry L.: A skeptic’s approach to combining HOL and maple. J. Autom. Reason. 21, 279–294 (1998)

    Article  MATH  Google Scholar 

  36. 36

    Hasan, O., Afshar, S.KH., Tahar, S.: Formal analysis of optical waveguides in Hol. In: Theorem Proving in Higher Order Logics, volume 5674 of LNCS, pp. 228–243. Springer (2009)

  37. 37

    Hayes P.R., O’Keefe M.T., Woodward P.R., Gopinath A.: Higher-order-compact time domain numerical simulation of optical waveguides. Opt. Quantum Electron. 31(9-10), 813–826 (1999)

    Article  Google Scholar 

  38. 38

    Heinbockel J.H.: Numerical Methods For Scientific Computing. Trafford, Victoria, BC, Canada (2004)

    Google Scholar 

  39. 39

    Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical analysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, Ch., Pichardie, D. (eds.) Interactive theorem proving. Lecture Notes in Computer Science, vol. 7998, pp. 279–294. Springer, Berlin, Heidelberg (2013)

  40. 40

    Johnson S.G., Joannopoulos J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis. Opt. Expr. 8(3), 173–190 (2001)

    Article  Google Scholar 

  41. 41

    Clarke E.M. Jr., Grumberg O., Peled D.A.: Model Checking. The MIT Press, Cambridge, MA, USA (1999)

    Google Scholar 

  42. 42

    Afshar S.K., Aravantinos V.: A HOL-Light library for vectors of complex numbers. (2014). Accessed 20 Mar 2014

  43. 43

    Kaliszyk, C., Wiedijk, F.: Certified computer algebra on top of an interactive theorem prover. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.) Towards Mechanized Mathematical Assistants. Lecture Notes in Computer Science, vol. 4573, pp. 94–105. Springer, Berlin, Heidelberg (2007)

  44. 44

    Karimi M., Abedi K., Zavvari M.: Resonant cavity enhanced quantum ring photodetector at 20 μm wavelength. Opt. Quantum Electron. 45(12), 1249–1258 (2013)

    Article  Google Scholar 

  45. 45

    Kogelnik H., Li T.: Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966)

    Article  Google Scholar 

  46. 46

    LASCAD. (2014). Accessed 20 Mar 2014

  47. 47

    Leonhardt U.: Quantum physics of simple optical instruments. Rep. Progr. Phys. 66(7), 1207 (2003)

    Article  MathSciNet  Google Scholar 

  48. 48

    Liu Y., Sarris C.D.: Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach. J. Lightwave Technol. 24(8), 3235–3247 (2006)

    Article  Google Scholar 

  49. 49

    Lounis B., Orrit M.: Single-photon sources. Rep. Progr. Phys. 68(5), 1129–1179 (2005)

    Article  Google Scholar 

  50. 50

    Mahmoud, M.Y., Aravantinos, V., Tahar, S.: Formalization of infinite dimension linear spaces with application to quantum theory. In: NASA Formal Methods, volume 7871 of LNCS, pp. 413–427. Springer (2013)

  51. 51

    Malak, M., Pavy, N., Marty, F., Peter, Y., Liu, A.Q., Bourouina, T.: Stable, high-Q Fabry–Perot resonators with long cavity based on curved, all-silicon, high reflectance mirrors. In: IEEE International Conference on Micro Electro Mechanical Systems, pp. 720–723 (2011)

  52. 52

    Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge, UK (1995)

    Book  Google Scholar 

  53. 53

    Mathscheme. (2014). Accessed 20 Mar 2014

  54. 54

    MATLAB. (2014). Accessed 20 Mar 2014

  55. 55

    Mookherjea S.: Analysis of optical pulse propagation with two-by-two (ABCD) matrices. Phys. Rev. E 64(016611), 1–10 (2001)

    Google Scholar 

  56. 56

    MuPAD. (2014). Accessed 20 Mar 2014

  57. 57

    Nakazawa M., Kubota H., Sahara A., Tamura K.: Time-domain ABCD matrix formalism for laser mode-locking and optical pulse transmission. IEEE J. Quantum Electron. 34(7), 1075–1081 (1998)

    Article  Google Scholar 

  58. 58

    Naqvi, A.: Comments on waves in planar waveguide containing chiral nihility metamaterial. Opt. Commun. 284:215–216, Elsevier (2011)

  59. 59

    Institute of Quantum Optics at Leibniz University of Hannover. General directives for safety in the institute of quantum optics. (2014). Accessed 20 Mar 2014

  60. 60

    Pereira A., Ostermann F., Cavalcanti C.: On the use of a virtual Mach–Zehnder interferometer in the teaching of quantum mechanics. Phys. Educ. 44(3), 281 (2009)

    Article  Google Scholar 

  61. 61

    Pollock C.R.: Fundamentals of Optoelectronics. Tom Casson, Chicago, USA (1995)

    Google Scholar 

  62. 62

    Prieto H., Dalmas S., Papegay Y.: Mathematica as an OpenMath application. SIGSAM Bull. 34, 22–26 (2000)

    Article  Google Scholar 

  63. 63

    Ralph T.C., Gilchrist A., Milburn G.J., Munro W.J., Glancy S.: Quantum computation with optical coherent states. Phys. Rev. 68, 042319 (2003)

    Article  Google Scholar 

  64. 64

    Saadany B., Malak M., Kubota M., Marty F.M., Mita Y., Khalil D., Bourouina T.: Free-space tunable and drop optical filters using vertical Bragg mirrors on silicon. IEEE J. Sel. Topics Quantum Electron. 12(6), 1480–1488 (2006)

    Article  Google Scholar 

  65. 65

    Saleh B.E.A., Teich M.C.: Fundamentals of Photonics. John Wiley & Sons, Inc., New York, USA (1991)

    Book  Google Scholar 

  66. 66

    Siddique, U., Aravantinos, V., Tahar, S.: A new approach for the verification of optical systems. In: Optical System Alignment, Tolerancing, and Verification VII, volume 8844 of SPIE, pp. 88440G–88440G–14 (2013)

  67. 67

    Siddique, U., Aravantinos, V., Tahar, S.: Formal stability analysis of optical resonators. In: NASA Formal Methods, volume 7871 of LNCS, pp. 368–382 (2013)

  68. 68

    Siddique, U., Aravantinos, V., Tahar, S.: On the formal analysis of geometrical optics in HOL. In: Automated Deduction in Geometry, volume 7993 of LNCS, pp. 161–180 (2013)

  69. 69

    Siegman A.E.: Lasers. University Science Books, Sausalito, CA, USA (1986)

    Google Scholar 

  70. 70

    Optica Software. (2014). Accessed 20 Mar 2014

  71. 71

    Song W.Z., Zhang X.M., Liu A.Q., Lim C.S., Yap P.H., Hosseini Habib M.M.: Refractive index measurement of single living cells using on-chip Fabry–Perot cavity. Appl. Phys. Lett. 89(20), 203901 (2006)

    Article  Google Scholar 

  72. 72

    Su B., Xue J., Sun L., Zhao H., Pei X.: Generalised ABCD matrix treatment for laser resonators and beam propagation. Opt. Laser Technol. 43(7), 1318–1320 (2011)

    Article  Google Scholar 

  73. 73

    Sylvester J.J.: The Collected Mathematical Papers of James Joseph Sylvester. vol. 4. Cambridge University Press, Cambridge, UK (1912)

    Google Scholar 

  74. 74

    Synopsys-CODE-V. (2014). Accessed 20 Mar 2014

  75. 75

    White A.G., Jennewein T., Barbieri M.: Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis. J. Modern Opt. 58, 276–287 (2011)

    Article  MATH  Google Scholar 

  76. 76

    Tan M.P., Kasten A.M., Sulkin J.D., Choquette K.D.: Planar photonic crystal vertical-cavity surface-emitting lasers. IEEE J. Sel. Topics Quantum Electron. 19(4), 4900107–4900107 (2013)

    Google Scholar 

  77. 77

    Tan S.M.: A computational toolbox for quantum and atomic optics. J. Opt. B: Quantum Semiclass. Opt. 1, 424–432 (1999)

    Article  Google Scholar 

  78. 78

    Ünlü, M.S., Strite, S.: Resonant cavity enhanced photonic devices. J. Appl. Phys. 78(2), 607–639 (1995)

  79. 79

    Wiedijk F.: A synthesis of the procedural and declarative styles of interactive theorem proving. Log. Methods Comput. Sci. 8(1), 1–26 (2012)

    Article  MathSciNet  Google Scholar 

  80. 80

    Wilson, W.C., Atkinson, G.M.: MOEMS modeling using the geometrical matrix toolbox. Technical report, NASA, Langley Research Center (2005)

  81. 81

    Yin, L., Hong, W.: Domain decomposition method: a direct solution of Maxwell equations. In: Antennas and Propagation Society International Symposium, IEEE, vol.2, pp. 1290–1293 (1999)

Download references

Author information



Corresponding author

Correspondence to Sanaz Khan-Afshar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan-Afshar, S., Siddique, U., Mahmoud, M.Y. et al. Formal Analysis of Optical Systems. Math.Comput.Sci. 8, 39–70 (2014).

Download citation


  • Theorem proving
  • Computer algebra systems
  • Optical systems
  • Ray optics
  • Electromagnetic optics
  • Quantum optics

Mathematics Subject Classification (2010)

  • Primary 68T15
  • Secondary 78A05
  • 78A25
  • 81V80