Skip to main content
Log in

Intuitionistic Fuzzy Logic Control for Heater Fans

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript


The concept of intuitionistic fuzzy systems, including intuitionistic fuzzy sets and intuitionistic fuzzy logic, was introduced by Atanassov as a generalization of fuzzy systems. Intuitionistic fuzzy systems provide a mechanism for communication between computing systems and humans. In this paper, we describe the development of an intuitionistic fuzzy logic controller for heater fans, developed on the basis of intuitionistic fuzzy systems. Intuitionistic fuzzy inference systems and defuzzification techniques are used to obtain crisp output (i.e., speed of the heater fan) from an intuitionistic fuzzy input (i.e., ambient temperature). The speed of the heater fan is calculated using intuitionistic fuzzy rules applied in an inference engine using defuzzification methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Agarwal, M., Biswas, K.K., Hanmandlu, M.: Probabilistic intuitionistic fuzzy rule based controller. ICARA, 214–219 (2011)

  2. Akram M., Dudek W.A.: Intuitionistic fuzzy hypergraphs with applications. Inf. Sci. 218, 182–193 (2013)

    Article  MathSciNet  Google Scholar 

  3. Alcalá R., Casillas J., Cordón O., González A., Herrera F.: A genetic rule weighting and selection process for fuzzy control of heating, ventilating andair conditioning systems. Eng. Appl. Artif. Intell. 18, 279–296 (2005)

    Article  Google Scholar 

  4. Angelov P.: Crispification: defuzzification over intuitionistic fuzzy sets. Bull. Stud. Exch. Fuzziness Appl. (BUSEFAL) 64, 51–55 (1995)

    Google Scholar 

  5. Atanassov, K.T.: Intuitionistic fuzzy sets, VII ITKR’s session, Sofia. Deposed in Central Science—Technology Library of Bulgaria Academy of Science, 1697/84 (in Bulgarian) (1983)

  6. Atanassov K.T., Gargov G.: Elements of intuitionistic fuzzy logic. Part I. Fuzzy Sets Syst. 95(1), 39–52 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications, Studies in Fuzziness and Soft Computing. Physica-Verlag Heidelberg/New York (2012)

  8. Ban, A.I.: Nearest interval approximation of an intuitionistic fuzzy number. In: Reusch, B. (eds.) Computational Intelligence, Theory and Applications, pp. 229–240. Springer, New York (2006)

  9. Chen S.J., Hwang C.L.: Fuzzy Multiple Attribute Decision Making. Springer Verlag, Berlin/Heildelberg/New York (1992)

    Book  MATH  Google Scholar 

  10. Ganesh M.: Introduction to Fuzzy Sets and Fuzzy Logic. Prentice Hall of India, New Delhi (2006)

    Google Scholar 

  11. Isizoh A.N., Okide S.O., Anazia A.E., Ogu C.D.: Temperature control system using fuzzy logic technique. Int. J. Adv. Res. Artif. Intell. 1(3), 27–31 (2012)

    Google Scholar 

  12. Lin, Y., Zhou, X., Gu, S., Wang, S.: The Takagi-Sugeno intuitionistic fuzzy systems are universal approximators. In: 2nd international conference on consumer electronics, communications and networks (2012)

  13. Parvathi R., Malathi C., Akram M., Atanassov K.T.: Intuitionistic fuzzy linear regression analysis. Fuzzy Optim. Decis. Mak. 12, 215–229 (2013)

    Article  MathSciNet  Google Scholar 

  14. Pedrycz W.: Fuzzy control and fuzzy systems. Research studies. Press/John Wiley, New York (1993)

    Google Scholar 

  15. Su, X., Shi, P., Wu, L., Song, Y.-D.: A novel control design on discrete-time Takagi-Sugeno fuzzy systems with time-varying delays. IEEE Trans. Fuzzy Syst. doi:10.1109/TFUZZ.2012.2226941

  16. Su X., Shi P., Wu L., Song Y.-D.: A novel approach to filter design for T–S fuzzy discrete-time systems with time-varying delay. IEEE Trans. Fuzzy Syst. 20(6), 1114–1129 (2012)

    Article  Google Scholar 

  17. Zadeh L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zadeh L.A.: The concept of linguistic variable and its application to approximate reasoning I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zadeh L.A.: The concept of linguistic variable and its application to approximate reasoning II. Inf. Sci. 8, 310–357 (1976)

    Google Scholar 

  20. Zimmermann H.-J.: Fuzzy set theory and its applications. Springer, New York (2012)

    Google Scholar 

  21. Zou L., Liu X., Ruan D., Xu Y.: Linguistic truth-valued intuitionistic fuzzy algebra. Multiple Val. Logic Soft Comput. 18(5–6), 445–456 (2012)

    MathSciNet  Google Scholar 

  22. Zou L., Li W., Xu Y.: Six-element linguistic truth-valued intuitionistic reasoning in decision making. ISNN 1, 266–274 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Muhammad Akram.

Additional information

This work was completed with the support of Principal of PUCIT (Syed Mansoor Sarwar).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akram, M., Shahzad, S., Butt, A. et al. Intuitionistic Fuzzy Logic Control for Heater Fans. Math.Comput.Sci. 7, 367–378 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification