Skip to main content

Intuitionistic Fuzzy Soft K-Algebras

Abstract

Intuitionistic fuzzy sets and soft sets are two different soft computing models for representing vagueness and uncertainty. We apply these soft computing models in combination to study vagueness and uncertainty in K-algebras. We first introduce the notion of \({(\in, \in\vee q)}\)-intuitionistic fuzzy K-algebras and discuss some of their properties. Then we introduce intuitionistic fuzzy soft K-algebras and investigate some of their properties. Finally, we introduce \({(\in, \in \vee q)}\)-intuitionistic fuzzy soft K-algebras and present some of their related properties.

This is a preview of subscription content, access via your institution.

References

  1. Abdullah S., Davvaz B., Aslam M.: (α, β)-intuitionistic fuzzy ideals of hemirings. Comput. Math. Appl. 62(8), 3077–3090 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  2. Akram M., Davvaz B.: Generalized fuzzy ideals of K-algebras. J. Multivalued Soft Comput. 19, 475–491 (2012)

    MathSciNet  Google Scholar 

  3. Akram M.: Bifuzzy ideals of K-algebras. WSEAS Trans. Math. 7(5), 313–322 (2008)

    MathSciNet  Google Scholar 

  4. Akram M., Al-Shehrie N.O., Alghamdi R.S.: Fuzzy soft K-algebras. Utilitas Mathematica 90, 307–325 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Ali M.I., Feng F., Liu X.Y., Min W.K., Shabir M.: On some new operations in soft set theory. Comput. Math. Appl. 57, 1547–1553 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  6. Atanassov, K.T.: Intuitionistic fuzzy sets. VII ITKR’s Session, Sofia, June 1983, Deposed in Central Sci-Techn. Library of Bulg. Acad. of Sci., 1697/84 (in Bulgarian)

  7. Bhakat S.K., Das P.: \({(\in, \in \vee q)}\)-fuzzy subgroup. Fuzzy Sets Syst. 80, 359–368 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  8. Coker D., Demirci M.: On intuitionistic fuzzy points. Notes IFS 1(2), 79–84 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Dar K.H., Akram M.: On a K-algebra built on a group. Southeast Asian Bull. Math. 29(1), 41–49 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Dar K.H., Akram M.: On K-homomorphisms of K-algebras. Int. Math. Forum 46, 2283–2293 (2007)

    MathSciNet  Google Scholar 

  11. Feng F., Li C.X., Davvaz B., Irfan Ali M.: Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Comput. 14, 899–911 (2010)

    Article  MATH  Google Scholar 

  12. Feng F., Jun Y.B., Liu X.Y., Li L.F.: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234, 10–20 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  13. Feng F., Liu X.Y., Leoreanu-Fotea V., Jun Y.B.: Soft sets and soft rough sets. Inf. Sci. 181, 1125–1137 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  14. Maji P.K., Biswas R., Roy R.: Soft set theory. Comput. Math. Appl. 45, 555–562 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  15. Maji P.K., Biswas R., Roy A.R.: Intuitionistic fuzzy soft sets. J. Fuzzy Math. 9(3), 677–692 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Molodtsov D.: Soft set theory first results. Comput. Math. Appl. 37, 19–31 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  17. Pu P.M., Liu Y.M.: Fuzzy topology, I. Neighborhood structure of a fuzzy point and Moore-Smith convergence. J. Math. Anal. Appl. 76(2), 571–599 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  18. Yang C.-F.: Fuzzy soft semigroups and fuzzy soft ideals. Comput. Math. Appl. 61, 255–561 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  19. Zadeh L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MathSciNet  Article  MATH  Google Scholar 

  20. Zhou J., Li Y., Yin Y.: Intuitionistic fuzzy soft semigroups. Mathematica Aeterna 1, 173–183 (2011)

    MathSciNet  Google Scholar 

  21. Yin, Y., Zhan, J.: The characterizations of hemirings in terms of fuzzy soft h-ideals. Neural Comput. Appl. doi:10.1007/s00521-011-0591-9

  22. Zhan J., Jun Y.B.: Soft BL-algebras based on fuzzy sets. Comput. Math. Appl. 59, 2037–2046 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  23. Dudek W.A.: . Sci. Bull. Series A Appl. Math. Phys. Politeh. Univ. Bucharest 74, 41–56 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Yin Y.Q., Jun Y.B., Zhan J.M.: Vague soft hemirings. Comput. Math. Appl. 62, 199–213 (2011)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Additional information

This work was completed with the support of adminstration of PUCIT.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akram, M., Davvaz, B. & Feng, F. Intuitionistic Fuzzy Soft K-Algebras. Math.Comput.Sci. 7, 353–365 (2013). https://doi.org/10.1007/s11786-013-0158-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-013-0158-5

Keywords

  • K-algebras
  • \({(\in, \in \vee q)}\)-intuitionistic fuzzy K-algebra
  • Intuitionistic fuzzy K-subalgebras
  • \({(\in, \in \vee q)}\)-intuitionistic fuzzy soft K-algebra

Mathematical Subject Classification (2000)

  • 20N15
  • 94D05