Skip to main content
Log in

Model Reduction of Chemical Reaction Systems using Elimination

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

There exist different schemes of model reduction for parametric ordinary differential systems arising from chemical reaction systems. In this paper, we focus on some schemes which rely on quasi-steady states approximations. We show that these schemes can be formulated by means of differential and algebraic elimination. Our formulation is simpler than the classical ones. It permitted us to obtain an approximation of the basic enzymatic reaction system which is different from those of Henri–Michaëlis–Menten and Briggs–Haldane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellon, B.: Biochimie structurale: introduction à la cinétique enzymatique (2006) (in French). http://www.up.univ-mrs.fr/wabim/d_agora/d_biochimie/cinetique.pdf

  2. Bennet M.R., Volfson D., Tsimring L., Hasty J.: Transient dynamics of genetic regulatory networks. Biophys. J. 92, 3501–3512 (2007)

    Article  Google Scholar 

  3. Boulier, F.: Réécriture algébrique dans les systèmes d’équations différentielles polynomiales en vue d’applications dans les Sciences du Vivant, May 2006. Mémoire d’habilitation à diriger des recherches. Université Lille I, LIFL, 59655 Villeneuve d’Ascq, France. http://tel.archives-ouvertes.fr/tel-00137153

  4. Boulier, F.: Differential Elimination and Biological Modelling. Radon Series on Computational and Applied Mathematics (Gröbner Bases in Symbolic Analysis) 2, pp. 111–139 (2007). http://hal.archives-ouvertes.fr/hal-00139364

  5. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC’95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995). http://hal.archives-ouvertes.fr/hal-00138020

  6. Boulier F., Lazard D., Ollivier F., Petitot M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput 20(1), 73–121 (2009) (1997 Techrep. IT306 of the LIFL)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a rigorous quasi-steady state approximation method for proving the absence of oscillations in models of genetic circuits. In: Horimoto, K., et al. (eds.) Proceedings of Algebraic Biology 2008 No. 5147 in LNCS, pp. 56–64. Springer, Berlin (2008)

  8. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On proving the absence of oscillations in models of genetic circuits. In: Anai, K.H.H., Kutsia, T. (eds.) Proceedings of Algebraic Biology, LNCS, vol. 4545, pp. 66–80. Springer, Berlin (2007). http://hal.archives-ouvertes.fr/hal-00139667

  9. Boulier, F., Lemaire, F.: Computing canonical representatives of regular differential ideals. In: ISSAC’00 Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, pp. 38–47. ACM Press, New York (2000). http://hal.archives-ouvertes.fr/hal-00139177

  10. Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010) doi:10.1007/s11786-010-0060-3

  11. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925). Available on http://www.biochemj.org/bj/019/0338/bj0190338_browse.htm

    Google Scholar 

  12. Crampin E.J., Schnell S., Mac Sharry P.E.: Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog. Biophys. Mol. Biol. 86, 77–112 (2004)

    Article  Google Scholar 

  13. Hairer E., Wanner G.: Solving ordinary differential equations II Stiff and Differential-Algebraic Problems 2nd edn Springer Series in Computational Mathematics vol 14. Springer, New York (1996)

    Google Scholar 

  14. Henri V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)

    Google Scholar 

  15. Horn F., Jackson R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  16. Hubert É.: Factorization free decomposition algorithms in differential algebra. J. Symb. Comput. 29(4–5), 641–662 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kell D.B., Knowles J.D.: The role of modeling in systems biology. In: Szallasi, Z., Stelling, J., Periwal, V. (eds) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 3–18. The MIT Press, Cambridge (2006)

    Google Scholar 

  18. Klamt S., Stelling J.: Stoichiometric and constraint-based modeling. In: Szallasi, Z., Stelling, J., Periwal, V. (eds) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 73–96. The MIT Press, Cambridge (2006)

    Google Scholar 

  19. Kolchin E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  20. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE 10. In: Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005)

  21. Michaelis, L., Menten M.: Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1973) (Partial translation in english on http://web.lemoyne.edu/~giunta/menten.html)

    Google Scholar 

  22. Morant, P.-E., Vandermoere, C., Parent, B., Lemaire, F., Corellou, F., Schwartz, C., Bouget, F.-Y., Lefranc, M.: Oscillateurs génétiques simples. Applications à l’horloge circadienne d’une algue unicellulaire. In: Proceedings of the Rencontre du non linéaire Paris (2007). http://nonlineaire.univ-lille1.fr

  23. Niu, W.: Qualitative Analysis of Biological Systems Using Algebraic Methods. PhD thesis, Université Paris VI, Paris, June 2011.

  24. Okino M.S., Mavrovouniotis M.L.: Simplification of mathematical models of chemical reaction systems. Chem. Rev. 98(2), 391–408 (1998)

    Article  Google Scholar 

  25. Ritt J.F.: Differential Algebra. Dover Publications Inc., NewYork (1950)

    MATH  Google Scholar 

  26. Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of their Affine Expanded Lie Symmetries. In: Anai, K.H.H., Kutsia, T. (eds.) Proceedings of Algebraic Biology 2007, LNCS, vol. 4545, pp. 277–291 (2007)

  27. Van Breusegem, V., Bastin, G.: Reduced order dynamical modelling of reaction systems: a singular perturbation approach. In: Proceedings of the 30th IEEE Conference on Decision and Control (Brighton, England, December 1991), pp. 1049–1054

  28. Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. In: Proceedings of the National Academy of Science of the USA 99, vol. 9, pp. 5988–5992 (2002)

  29. Vora N., Vora N.: Nonlinear model reduction of chemical reaction systems. AIChE J. 45(10), 2320–2332 (2001)

    Article  Google Scholar 

  30. Wang D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2003)

    Google Scholar 

  31. Wang, D., Xia, B.: Stability Analysis of Biological Systems with Real Solution Classification. In: Proceedings of ISSAC 2005, pp. 354–361, Beijing (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Boulier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulier, F., Lefranc, M., Lemaire, F. et al. Model Reduction of Chemical Reaction Systems using Elimination. Math.Comput.Sci. 5, 289–301 (2011). https://doi.org/10.1007/s11786-011-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-011-0093-2

Keywords

Mathematics Subject Classification (2000)

Navigation