Skip to main content
Log in

Constructive D-Module Theory with Singular

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We overview numerous algorithms in computational D-module theory together with the theoretical background as well as the implementation in the computer algebra system Singular. We discuss new approaches to the computation of Bernstein operators, of logarithmic annihilator of a polynomial, of annihilators of rational functions as well as complex powers of polynomials. We analyze algorithms for local Bernstein–Sato polynomials and also algorithms, recovering any kind of Bernstein–Sato polynomial from partial knowledge of its roots. We address a novel way to compute the Bernstein–Sato polynomial for an affine variety algorithmically. All the carefully selected nontrivial examples, which we present, have been computed with our implementation. We also address such applications as the computation of a zeta-function for certain integrals and revealing the algebraic dependence between pairwise commuting elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, D., Levandovskyy, V., Martín-Morales, J.: Principal intersection and Bernstein–Sato polynomial of an affine variety. In: May, J.P. (ed.) Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’09), pp. 231–238. ACM Press, New York (2009)

  2. Andres, D., Levandovskyy, V., Martín-Morales, J.: Effective methods for the computation of Bernstein–Sato polynomials for hypersurfaces and affine varieties. http://arxiv.org/abs/1002.3644 (2010)

  3. Bahloul R., Oaku T.: Local Bernstein–Sato ideals: algorithm and examples. J. Symb. Comput. 45(1), 46–59 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernstein I.N.: Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients. Funct. Anal. Appl. 5(2), 89–101 (1971)

    Article  MATH  Google Scholar 

  5. Briançon, J., Maisonobe, P.: Remarques sur l’idéal de Bernstein associé à des polynômes. Preprint no. 650, Univ. Nice Sophia-Antipolis (2002)

  6. Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. In: Rhine Workshop on Computer Algebra, pp. 55–66. Proceedings of RWCA’06, Basel, March 2006

  7. Budur N., Mustaţǎ M., Saito M.: Bernstein–Sato polynomials of arbitrary varieties. Compos. Math. 142(3), 779–797 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bueso J., Gömez-Torrecillas J., Verschoren A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer, Dordrecht (2003)

    MATH  Google Scholar 

  9. Castro-Jiménez, F., Narváez-Macarro, L.: Homogenising differential operators. Prepublicaciön no. 36, Universidad de Sevilla (1997)

  10. Coutinho, S.: A Primer of Algebraic \({\mathcal{D}}\)-Modules. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  11. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-2. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de (2010)

  12. Faugere J.C., Gianni P., Lazard D., Mora T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gago-Vargas J., Hartillo-Hermoso M., Ucha-Enríquez J.: Comparison of theoretical complexities of two methods for computing annihilating ideals of polynomials. J. Symb. Comput. 40(3), 1076–1086 (2005)

    Article  MATH  Google Scholar 

  14. Greuel, G.-M., Levandovskyy, V., Schönemann, H.: Plural. A Singular 3-1-0 Subsystem for Computations with Non-commutative Polynomial Algebras. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de (2006)

  15. Greuel, G.-M., Pfister, G.: A SINGULAR Introduction to Commutative Algebra. Springer, 2nd edn. With contributions by Bachmann, O., Lossen, C., Schönemann, H. (2008)

  16. Hartillo-Hermoso, M.I.: About an algorithm of T. Oaku. In: Ring theory and algebraic geometry (León, 1999), Lecture Notes in Pure and Applied Mathematics, vol. 221, pp. 241–250. Dekker, New York (2001)

  17. Kandri-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symb. Comput. 9(1), 1–26 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kashiwara M.: B-functions and holonomic systems. Rationality of roots of B-functions. Invent. Math. 38(1), 33–53 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levandovskyy, V.: On preimages of ideals in certain non-commutative algebras. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)

  20. Levandovskyy, V., Martín-Morales, J.: Computational D-module theory with singular, comparison with other systems and two new algorithms. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’08). ACM Press, New York. http://doi.acm.org/10.1145/1390768.1390794 (2008)

  21. Levandovskyy V., Martín-Morales J. (2010) Algorithms for checking rational roots of b-functions and their applications. http://arxiv.org/abs/1003.3478 (2010)

  22. Levandovskyy, V., Schönemann, H.: Plural—a computer algebra system for noncommutative polynomial algebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC’03), pp. 176–183. ACM Press, New York (2003)

  23. Li, H.: Noncommutative Gröbner Bases And Filtered-Graded Transfer. Springer, Berlin (2002)

  24. Malgrange, B.: Le polynôme de Bernstein d’une singularité isolée. In: Fourier Integral Operators and Partial Differential Equations (Colloq. Internat., Univ. Nice, Nice, 1974), pp. 98–119. Lecture Notes in Math., vol. 459. Springer, Berlin (1975)

  25. Mebkhout Z.: Sur le théorème de finitude de la cohomologie p-adique d’une variété affine non singulière. Am. J. Math. 119(5), 1027–1081 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mebkhout Z., Narváez-Macarro L.: Le théorème de continuité de la division dans les anneaux d’opérateurs différentiels. J. Reine Angew. Math. 503, 193–236 (1998)

    MATH  MathSciNet  Google Scholar 

  27. Nakayama H.: Algorithm computing the local b function by an approximate division algorithm in \({\widehat{\mathcal{D}}}\). J. Symb. Comput., 44(5), 449–462 (Spanish National Conference on Computer Algebra) (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Narváez-Macarro, L.: Linearity conditions on the Jacobian ideal and logarithmic-meromorphic comparison for free divisors. In: Singularities I, Algebraic and Analytic Aspects, pp. 245–269. Contemporary Mathematics, 474, AMS, 2008

  29. Nishiyama K., Noro M.: Stratification associated with local b-functions. J. Symb. Comput. 45(4), 462–480 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Noro, M.: An efficient modular algorithm for computing the global b-function. In: Mathematical software (Beijing, 2002), pp. 147–157. World Science Publication, River Edge (2002)

  31. Noro, M., Shimoyama, T., Takeshima, T.: Risa/Asir, an open source general computer algebra system. http://www.math.kobe-u.ac.jp/Asir (2006)

  32. Oaku T.: Algorithms for the b-function and D-modules associated with a polynomial. J. Pure Appl. Algebra 117(118), 495–518 (1997)

    Article  MathSciNet  Google Scholar 

  33. Saito M.: On microlocal b-function. Bull. Soc. Math. France 122(2), 163–184 (1994)

    MATH  MathSciNet  Google Scholar 

  34. Saito, M., Sturmfels, B., Takayama, N.: Gröbner deformations of hypergeometric differential equations. Springer, Berlin (2000)

    MATH  Google Scholar 

  35. Schindelar, K., Levandovskyy, V., Zerz, E.: Exact linear modeling using Ore algebras. J. Symb. Comput. 2010 (in press)

  36. Schulze M.: A normal form algorithm for the Brieskorn lattice. J. Symb. Comput. 38(4), 1207–1225 (2004)

    Article  MathSciNet  Google Scholar 

  37. Shibuta, T.: An algorithm for computing multiplier ideals. http://arxiv.org/abs/math/0807.4302 (2008)

  38. Takayama, N.: kan/sm1, a Gröbner engine for the ring of differential and difference operators. http://www.math.kobe-u.ac.jp/KAN/index.html (2003)

  39. Torrelli, T.: Logarithmic comparison theorem and D-modules: an overview. In: Singularity theory, pp. 995–1009. World Science Publication, Hackensack (2007)

  40. Tsai H., Leykin A. (2006) D-modules package for Macaulay 2 – algorithms for D–modules. http://www.ima.umn.edu/~leykin/Dmodules (2006)

  41. Varchenko A.N.: Asymptotic Hodge structure on vanishing cohomology. Izv. Akad. Nauk SSSR Ser. Mat. 45(3), 540–591 (1981)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Levandovskyy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andres, D., Brickenstein, M., Levandovskyy, V. et al. Constructive D-Module Theory with Singular . Math.Comput.Sci. 4, 359–383 (2010). https://doi.org/10.1007/s11786-010-0058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0058-x

Keywords

Mathematics Subject Classification (2010)

Navigation