Skip to main content
Log in

Computing the Newton Polygon of the Implicit Equation

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We consider rationally parameterized plane curves, where the polynomials in the parameterization have fixed supports and generic coefficients. We apply sparse (or toric) elimination theory in order to determine the vertex representation of the implicit equation’s Newton polygon. In particular, we consider mixed subdivisions of the input Newton polygons and regular triangulations of point sets defined by Cayley’s trick. We consider polynomial and rational parameterizations, where the latter may have the same or different denominators; the implicit polygon is shown to have, respectively, up to four, five, or six vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corless, R.M., Giesbrecht, M.W., Kotsireas, I.S., Watt, S.M.: Numerical implicitization of parametric hypersurfaces with linear algebra. In: Artificial Intelligence & symbolic Computation, (Madrid, 2000), pp. 174–183. Springer, Berlin (2001)

  2. Cox D.A., Sederberg T.W., Chen F.: The moving line ideal basis of planar rational curves. Comput. Aided Geom. Des. 15(8), 803–827 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dickenstein A., Feichtner E.M., Sturmfels B.: Tropical discriminants. J. Am. Math. Soc. 20(4), 1111–1133 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dokken, T.: Approximate implicitization. In: Mathematical Methods for Curves and Surfaces (Oslo, 2000), pp. 81–102. Vanderbilt University, Nashville (2001)

  5. D’Andrea C., Sombra M.: The Newton polygon of a rational plane curve. In: Gonzalez-Vega, L., Lazard, S. (eds) Math. in Comp. Science (this Issue), Birkhäuser, Basel (2010)

    Google Scholar 

  6. D’Andrea C., Sombra M.: Rational parametrizations, intersection theory and Newton polytopes. In: Emiris, I.Z., Sottile, F., Theobald, T. (eds) Nonlinear Computational Geometry. IMA Volumes in Math. & Appl., vol. 151, pp. 35–50. Springer, New York (2009)

    Google Scholar 

  7. Emiris, I.Z., Fisikopoulos, V., Konaxis, C.: Regular triangulations and resultant polytopes. 26th Europ. Workshop Comput. Geometry, Dortmund, Germany (2010)

  8. Emiris, I.Z., Kotsireas, I.S.: Implicitization with polynomial support optimized for sparseness. In: Proc. Intern. Conf. Comput. Science & Appl. 2003, Montreal (Intern. Workshop Comp. Graphics & Geom. Modeling). LNCS, vol. 2669, pp. 397–406. Springer, Berlin (2003)

  9. Emiris, I.Z., Kotsireas, I.S.: Implicitization exploiting sparseness. In: Janardan, R., Smid, M., Dutta, D. (eds.) Geometric & Algorithmic Aspects of Comp.-Aided Design & Manufacturing. DIMACS, vol. 67, pp. 281–298. DIMACS (2005)

  10. Emiris, I.Z., Konaxis, C., Palios, L.: Computing the Newton polytope of specialized resultants. MEGA 2007, RICAM (Johann Radon Institute for Computational and Applied Mathematics), Strobl, Austria

  11. Esterov, A., Khovanskii, A.: Elimination theory and Newton polytopes (2007). arXiv.org:math/0611107v2

  12. Gelfand I.M., Kapranov M.M., Zelevinsky A.V.: Newton polytopes of the classical resultant and discriminant. Adv. Math. 84, 237–254 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gelfand I., Kapranov M., Zelevinsky A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  14. Michiels T., Verschelde J.: Enumerating regular mixed-cell configurations. Discret. Comp. Geom. 21(4), 569–579 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Philippon, P., Sombra, M.: A refinement of the Kusnirenko–Bernstein estimate. Tech. Report (2007). arXiv.org:0709.3306

  16. Santos, F.: The Cayley trick and triangulations of products of simplices. In: Integer Points in Polyhedra: Geometry, Number Theory, Algebra, Optimization. Contemporary Mathematics, vol. 374, pp. 151–177. AMS, Philadelphia (2005)

  17. Sederberg T.W.: Improperly parametrized rational curves. Comput. Aided Geom. Des. 3(1), 67–75 (1986)

    Article  MATH  Google Scholar 

  18. Sendra, J.R., Winkler, F.: Computation of the degree of rational maps between curves. In: Proc. Intern. Symp. Symbolic & Algebraic Computation, pp. 317–322. ACM Press, New York (2001)

  19. Sturmfels B.: On the Newton polytope of the resultant. J. Algebraic Comb. 3(2), 207–236 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sturmfels, B., Tevelev, J., Yu, J.: The Newton polytope of the implicit equation. Moscow Math. J. 7(2) (2007)

  21. Sturmfels B., Yu J.T.: Minimal polynomials and sparse resultants. In: Orecchia, F., Chiantini, L. (eds) Zero-Dimensional Schemes Proc Ravello, June 1992, pp. 317–324. De Gruyter, Berlin (1994)

    Google Scholar 

  22. Sturmfels B., Yu J.: Tropical implicitization and mixed fiber polytopes. In: Stillman, M., Verschelde, J., Takayama, N. (eds) Software for Algebraic Geometry. IMA Volumes in Math. & its Appl., vol 148, pp. 111–131. Springer, New York (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Konaxis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emiris, I.Z., Konaxis, C. & Palios, L. Computing the Newton Polygon of the Implicit Equation. Math.Comput.Sci. 4, 25–44 (2010). https://doi.org/10.1007/s11786-010-0046-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0046-1

Keywords

Mathematics Subject Classification (2000)

Navigation