Abstract
In this paper, we introduce the strong b-suprametric spaces in which we prove the fixed point principles of Banach and Edelstein. Moreover, we prove a variational principle of Ekeland and deduce a Caristi fixed point theorem. Furthermore, we introduce the strong b-supranormed linear spaces in which we establish the fixed point principles of Brouwer and Schauder. As applications, we study the existence of solutions to an integral equation and to a third-order boundary value problem.
Similar content being viewed by others
Data availability
Not applicable.
References
Bakherad, M., Dragomir, S.S.: Noncommutative Chebyshev inequality involving the Hadamard product. Azerb. J. Math. 9, 46–58 (2019)
Berinde, V., Păcurar, M.: The early developments in fixed point theory on \(b\)-metric spaces. Carpathian J. Math. 38, 523–538 (2022)
Berzig, M.: First results in suprametric spaces with applications. Mediterr. J. Math. 19, 1–18 (2022). https://doi.org/10.1007/s00009-022-02148-6
Berzig, M.: Nonlinear contraction in \(b\)-suprametric spaces. J. Anal. (2024). https://doi.org/10.1007/s41478-024-00732-5
Berzig, M., Kedim, I.: Eilenberg–Jachymski collection and its first consequences for the fixed point theory. J. Fixed Point Theory Appl. 23, 1–13 (2021). https://doi.org/10.1007/s11784-021-00854-4
Bota, M., Molnar, A., Varga, C.: On Ekeland’s variational principle in \(b\)-metric spaces. Fixed Point Theory 12, 21–28 (2011)
Chifu, C., Petruşel, G.: Fixed points for multivalued contractions in \(b\)-metric spaces with applications to fractals. Taiwan. J. Math. 18, 1365–1375 (2014). https://doi.org/10.11650/tjm.18.2014.4137
Czerwik, S.: Contraction mappings in \(b\)-metric spaces. Acta Math. Univ. Ostrav. 1, 5–11 (1993)
Czerwik, S.: On \(b\)-metric spaces and Brower and Schauder fixed point principles. In: Approximation Theory and Analytic Inequalities, pp. 71–86. Springer (2021). https://doi.org/10.1007/978-3-030-60622-0_6
Dunford, N., Schwartz, J.: Linear Operators, Part 1: General Theory, vol. 10. Wiley, New York (1988)
Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1, 74–79 (1962). https://doi.org/10.1112/jlms/s1-37.1.74
Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings. Marcel Dekker, New York (1984)
Kajántó, S., Lukács, A.: A note on the paper “contraction mappings in b-metric spaces’’ by Czerwik. Acta Math. Univ. Ostrav. 10, 85–89 (2018). https://doi.org/10.2478/ausm-2018-0007
Karapınar, E.: A short survey on the recent fixed point results on \(b\)-metric spaces. Constr. Math. Anal. 1, 15–44 (2018). https://doi.org/10.33205/cma.453034
Karapınar, E., Noorwali, M.: Dragomir and Gosa type inequalities on \(b\)-metric spaces. J. Inequal. Appl. 2019, 1–7 (2019). https://doi.org/10.1186/s13660-019-1979-9
Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)
Kirk, W., Shahzad, N.: Fixed points and Cauchy sequences in semimetric spaces. J. Fixed Point Theory Appl. 17, 541–555 (2015). https://doi.org/10.1007/s11784-015-0233-4
Liusternik, K., Sobolev, V.: Elements of Functional Analysis. Hindustan Publishing Co, New Delhi (1974)
Liepiņš, A.: Edelstein’s fixed point theorem in topological spaces. Numer. Funct. Anal. Optim. 2, 387–396 (1980). https://doi.org/10.1080/01630568008816066
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis, vol. 61. Springer, Berlin (2013)
Panda, S.K., Kalla, K., Nagy, A., Priyanka, L.: Numerical simulations and complex valued fractional order neural networks via (\(\varepsilon \)-\(\mu \))-uniformly contractive mappings. Chaos Solitons Fractals 173, 113738 (2023). https://doi.org/10.1016/j.chaos.2023.113738
Panda, S.K., Agarwal, R.P., Karapınar, E.: Extended suprametric spaces and Stone-type theorem. AIMS Math. 8, 23183–23199 (2023). https://doi.org/10.3934/math.20231179
Rahman, G., Nisar, K.S., Ghanbari, B., Abdeljawad, T.: On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. Adv. Differ. Equ. 2020(1), 1–19 (2020). https://doi.org/10.1186/s13662-020-02830-7
Shapiro, J.: A Fixed-Point Farrago. Springer, Cham (2016)
Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14, 438–443 (1963). https://doi.org/10.2307/2033816
Van An, T., Tuyen, L., Van Dung, N.: Stone-type theorem on \(b\)-metric spaces and applications. Topol. Appl. 185, 50–64 (2015). https://doi.org/10.1016/j.topol.2015.02.005
Younis, M., Singh, D., Abdou, A.: A fixed point approach for tuning circuit problem in dislocated \(b\)-metric spaces. Math. Methods Appl. Sci. 45, 2234–2253 (2022). https://doi.org/10.1002/mma.7922
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The author reviewed the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The author declares no conflict of interest.
Additional information
Communicated by Simeon Reich.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Berzig, M. Strong b-Suprametric Spaces and Fixed Point Principles. Complex Anal. Oper. Theory 18, 148 (2024). https://doi.org/10.1007/s11785-024-01594-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11785-024-01594-2