Skip to main content
Log in

Strong b-Suprametric Spaces and Fixed Point Principles

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we introduce the strong b-suprametric spaces in which we prove the fixed point principles of Banach and Edelstein. Moreover, we prove a variational principle of Ekeland and deduce a Caristi fixed point theorem. Furthermore, we introduce the strong b-supranormed linear spaces in which we establish the fixed point principles of Brouwer and Schauder. As applications, we study the existence of solutions to an integral equation and to a third-order boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bakherad, M., Dragomir, S.S.: Noncommutative Chebyshev inequality involving the Hadamard product. Azerb. J. Math. 9, 46–58 (2019)

    MathSciNet  Google Scholar 

  2. Berinde, V., Păcurar, M.: The early developments in fixed point theory on \(b\)-metric spaces. Carpathian J. Math. 38, 523–538 (2022)

    Article  MathSciNet  Google Scholar 

  3. Berzig, M.: First results in suprametric spaces with applications. Mediterr. J. Math. 19, 1–18 (2022). https://doi.org/10.1007/s00009-022-02148-6

    Article  MathSciNet  Google Scholar 

  4. Berzig, M.: Nonlinear contraction in \(b\)-suprametric spaces. J. Anal. (2024). https://doi.org/10.1007/s41478-024-00732-5

    Article  Google Scholar 

  5. Berzig, M., Kedim, I.: Eilenberg–Jachymski collection and its first consequences for the fixed point theory. J. Fixed Point Theory Appl. 23, 1–13 (2021). https://doi.org/10.1007/s11784-021-00854-4

    Article  MathSciNet  Google Scholar 

  6. Bota, M., Molnar, A., Varga, C.: On Ekeland’s variational principle in \(b\)-metric spaces. Fixed Point Theory 12, 21–28 (2011)

    MathSciNet  Google Scholar 

  7. Chifu, C., Petruşel, G.: Fixed points for multivalued contractions in \(b\)-metric spaces with applications to fractals. Taiwan. J. Math. 18, 1365–1375 (2014). https://doi.org/10.11650/tjm.18.2014.4137

    Article  MathSciNet  Google Scholar 

  8. Czerwik, S.: Contraction mappings in \(b\)-metric spaces. Acta Math. Univ. Ostrav. 1, 5–11 (1993)

    MathSciNet  Google Scholar 

  9. Czerwik, S.: On \(b\)-metric spaces and Brower and Schauder fixed point principles. In: Approximation Theory and Analytic Inequalities, pp. 71–86. Springer (2021). https://doi.org/10.1007/978-3-030-60622-0_6

  10. Dunford, N., Schwartz, J.: Linear Operators, Part 1: General Theory, vol. 10. Wiley, New York (1988)

    Google Scholar 

  11. Edelstein, M.: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1, 74–79 (1962). https://doi.org/10.1112/jlms/s1-37.1.74

    Article  MathSciNet  Google Scholar 

  12. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Non-expansive Mappings. Marcel Dekker, New York (1984)

    Google Scholar 

  13. Kajántó, S., Lukács, A.: A note on the paper “contraction mappings in b-metric spaces’’ by Czerwik. Acta Math. Univ. Ostrav. 10, 85–89 (2018). https://doi.org/10.2478/ausm-2018-0007

    Article  MathSciNet  Google Scholar 

  14. Karapınar, E.: A short survey on the recent fixed point results on \(b\)-metric spaces. Constr. Math. Anal. 1, 15–44 (2018). https://doi.org/10.33205/cma.453034

    Article  MathSciNet  Google Scholar 

  15. Karapınar, E., Noorwali, M.: Dragomir and Gosa type inequalities on \(b\)-metric spaces. J. Inequal. Appl. 2019, 1–7 (2019). https://doi.org/10.1186/s13660-019-1979-9

    Article  MathSciNet  Google Scholar 

  16. Kirk, W., Shahzad, N.: Fixed Point Theory in Distance Spaces. Springer, Cham (2014)

    Book  Google Scholar 

  17. Kirk, W., Shahzad, N.: Fixed points and Cauchy sequences in semimetric spaces. J. Fixed Point Theory Appl. 17, 541–555 (2015). https://doi.org/10.1007/s11784-015-0233-4

    Article  MathSciNet  Google Scholar 

  18. Liusternik, K., Sobolev, V.: Elements of Functional Analysis. Hindustan Publishing Co, New Delhi (1974)

    Google Scholar 

  19. Liepiņš, A.: Edelstein’s fixed point theorem in topological spaces. Numer. Funct. Anal. Optim. 2, 387–396 (1980). https://doi.org/10.1080/01630568008816066

    Article  MathSciNet  Google Scholar 

  20. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis, vol. 61. Springer, Berlin (2013)

    Google Scholar 

  21. Panda, S.K., Kalla, K., Nagy, A., Priyanka, L.: Numerical simulations and complex valued fractional order neural networks via (\(\varepsilon \)-\(\mu \))-uniformly contractive mappings. Chaos Solitons Fractals 173, 113738 (2023). https://doi.org/10.1016/j.chaos.2023.113738

    Article  MathSciNet  Google Scholar 

  22. Panda, S.K., Agarwal, R.P., Karapınar, E.: Extended suprametric spaces and Stone-type theorem. AIMS Math. 8, 23183–23199 (2023). https://doi.org/10.3934/math.20231179

    Article  MathSciNet  Google Scholar 

  23. Rahman, G., Nisar, K.S., Ghanbari, B., Abdeljawad, T.: On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals. Adv. Differ. Equ. 2020(1), 1–19 (2020). https://doi.org/10.1186/s13662-020-02830-7

    Article  MathSciNet  Google Scholar 

  24. Shapiro, J.: A Fixed-Point Farrago. Springer, Cham (2016)

    Book  Google Scholar 

  25. Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14, 438–443 (1963). https://doi.org/10.2307/2033816

    Article  MathSciNet  Google Scholar 

  26. Van An, T., Tuyen, L., Van Dung, N.: Stone-type theorem on \(b\)-metric spaces and applications. Topol. Appl. 185, 50–64 (2015). https://doi.org/10.1016/j.topol.2015.02.005

    Article  MathSciNet  Google Scholar 

  27. Younis, M., Singh, D., Abdou, A.: A fixed point approach for tuning circuit problem in dislocated \(b\)-metric spaces. Math. Methods Appl. Sci. 45, 2234–2253 (2022). https://doi.org/10.1002/mma.7922

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The author reviewed the manuscript.

Corresponding author

Correspondence to Maher Berzig.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Simeon Reich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berzig, M. Strong b-Suprametric Spaces and Fixed Point Principles. Complex Anal. Oper. Theory 18, 148 (2024). https://doi.org/10.1007/s11785-024-01594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-024-01594-2

Keywords

Mathematics Subject Classification

Navigation