Skip to main content
Log in

Rate of Convergence for Double Rational Fourier Series

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We calculate the rate of convergence of the double rational Fourier series for regular, bounded, measurable, and two-variable functions. The rectangular oscillation of the two-variable function is used to quantify this rate. Additionally, we give an approximation of convergence rate of the double rational Fourier series for continuous functions with generalized bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

  1. Abdullayev, F.G., Savchuk, V.V.: Fejér-type positive operator based on Takenaka-Malmquist system on unit circle. J. Math. Anal. Appl. 529(2), 127298 (2024)

    Article  Google Scholar 

  2. Achieser, N.I.: Theory of approximation Translated from the Russian. In: ed Charles J, Frederick Ungar Publishing Co, Hyman. New York. p 1956 (1947)

  3. Akçay, H.: On the uniform approximation of discrete-time systems by generalized Fourier series. IEEE Trans. Signal Process. 49(7), 1461–1467 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bojanić, R.: An estimate of the rate of convergence for Fourier series of functions of bounded variation. Publ. Inst. Math. (Beograd) 26(40), 57–60 (1979)

    MathSciNet  Google Scholar 

  5. Ranko, B., Waterman, D.: On the rate of convergence of Fourier series of functions of generalized bounded variation. Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka 22, 5–11 (1983)

  6. Bultheel, A., González-Vera, P., Hendriksen, E., Njastad, O., et al.: Cambridge Monographs on Applied and Computational Mathematics, p. 5. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  7. Clarkson, J.A., Adams, C.R.: On definitions of bounded variation for functions of two variables. Trans. Am. Math. Soc. 35(4), 824–854 (1933)

    Article  MathSciNet  Google Scholar 

  8. Džrbašyan, M.M.: On the theory of series of Fourier in terms of rational functions. Akad. Nauk Armyan. SSR. Izv. Fiz.-Mat Estest. Tehn. Nauki 9, 3–28 (1956)

    MathSciNet  Google Scholar 

  9. Fu, Y.X., Li, L.Q.: Convergence of the Cesàro mean for rational orthonormal bases. Acta Math. Sin. Engl. Ser. 25(4), 581–592 (2009)

    Article  MathSciNet  Google Scholar 

  10. Kazlouskaya, N.Y., Rovba, Y.A.: Approximation of the function \(|{\rm SIN}\, x|^s\) by the partial sums of the trigonmometric rational Fourier series. Dokl. Nats. Akad. Nauk Belarusi 65(1), 11–17 (2021)

    Article  MathSciNet  Google Scholar 

  11. Khachar, H.J., Vyas, R.G.: A note on multiple rational Fourier series. Period. Math. Hung. 85(2), 264–274 (2022)

    Article  MathSciNet  Google Scholar 

  12. Khachar, Hardeepbhai J., Vyas, Rajendra G.: Rate of convergence for rational and conjugate rational fourier series of functions of generalized bounded variation. Acta Comment. Univ. Tartu. Math. 26(2), 233–241 (2022)

    MathSciNet  Google Scholar 

  13. Mnatsakanyan, G.: On almost-everywhere convergence of Malmquist-Takenaka series. J. Funct. Anal. 282(12), 109461–109533 (2022)

    Article  MathSciNet  Google Scholar 

  14. Móricz, F.: A quantitative version of the Dirichlet-Jordan test for double Fourier series. J. Approx. Theory 71(3), 344–358 (1992)

    Article  MathSciNet  Google Scholar 

  15. Ninness, Brett, Gustafsson, Fredrik: A unifying construction of orthonormal bases for system identification. IEEE Trans. Automat. Control 42(4), 515–521 (1997)

    Article  MathSciNet  Google Scholar 

  16. Pap, Margit, Schipp, Ferenc: Equilibrium conditions for the Malmquist-Takenaka systems. Acta Sci. Math. (Szeged) 81(3–4), 469–482 (2015)

    Article  MathSciNet  Google Scholar 

  17. Qian, Tao: Two-dimensional adaptive Fourier decomposition. Math. Methods Appl. Sci. 39(10), 2431–2448 (2016)

    Article  MathSciNet  Google Scholar 

  18. Qian, Tao, Li, Hong, Stessin, Michael: Comparison of adaptive mono-component decompositions. Nonlinear Anal. Real World Appl. 14(2), 1055–1074 (2013)

    Article  MathSciNet  Google Scholar 

  19. Tao, Q., Xiaoyin, W., Liming, Z.: MIMO frequency domain system identification using matrix-valued orthonormal functions. Automatica J. IFAC 133, 109882 (2021)

    Article  MathSciNet  Google Scholar 

  20. Sablin, A.I.: \(\Lambda \)-variation and Fourier series. Izv. Vyssh. Uchebn. Zaved. Mat. 10, 66–68 (1987)

    MathSciNet  Google Scholar 

  21. Savchuk, V.V.: Best approximations of the Cauchy-Szegö kernel in the mean on the unit circle. Ukr. Math. J. 70(5), 817–825 (2018)

    Article  Google Scholar 

  22. Tan, L., Qian, T.: On convergence of rational Fourier series of functions of bounded variations (in Chinese). Sci. Sin. Math. 43(6), 541–550 (2013). https://doi.org/10.1360/012013-127

    Article  MathSciNet  Google Scholar 

  23. Tan, L., Zhou, C.: On the order of rational Fourier coefficients of various bounded variations. Compl. Var. Elliptic Equ. 58(12), 1737–1743 (2013)

    Article  MathSciNet  Google Scholar 

  24. Tan, Lihui, Zhou, Chaoying: The point-wise convergence of general rational Fourier series. Math. Methods Appl. Sci. 35(17), 2067–2074 (2012)

    Article  MathSciNet  Google Scholar 

  25. Z. Wang, Chi Man W., Agostinho R., Tao Q., and Feng W.: Adaptive Fourier decomposition for multi-channel signal analysis. IEEE Trans. Signal Process. 70, 903–918 (2022)

  26. Waterman, Daniel: On \(L\)-bounded variation. Studia Math. 57(1), 33–45 (1976)

    Article  MathSciNet  Google Scholar 

  27. Waterman, D.: Estimating functions by partial sums of their Fourier series. J. Math. Anal. Appl. 87(1), 51–57 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referee for their valuable suggestions in improving quality of the paper.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors contributed equally.

Corresponding author

Correspondence to Hardeepbhai J. Khachar.

Ethics declarations

Funding

The first author is thankful to Council of Scientific and Industrial Research, India for providing financial support through SRF (File no.: 09/0114(11228)/2021-EMR-I).

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Tao Qian.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachar, H.J., Vyas, R.G. Rate of Convergence for Double Rational Fourier Series. Complex Anal. Oper. Theory 18, 99 (2024). https://doi.org/10.1007/s11785-023-01479-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01479-w

Keywords

Mathematics Subject Classification

Navigation