Skip to main content
Log in

Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The present study introduces the two-sided and right-sided Quaternion Hyperbolic Fourier Transforms (QHFTs) for analyzing two-dimensional quaternion-valued signals defined in an open rectangle of the Euclidean plane endowed with a hyperbolic measure. The different forms of these transforms are defined by replacing the Euclidean plane waves with the corresponding hyperbolic plane waves in one dimension, giving the hyperbolic counterpart of the corresponding Euclidean Quaternion Fourier Transforms. Using hyperbolic geometry tools, we study the main operational and mapping properties of the QHFTs, such as linearity, shift, modulation, dilation, symmetry, inversion, and derivatives. Emphasis is placed on novel hyperbolic derivative and hyperbolic primitive concepts, which lead to the differentiation and integration properties of the QHFTs. We further prove the Riemann–Lebesgue Lemma and Parseval’s identity for the two-sided QHFT. Besides, we establish the Logarithmic, Heisenberg–Weyl, Donoho–Stark, and Benedicks’ uncertainty principles associated with the two-sided QHFT by invoking hyperbolic counterparts of the convolution, Pitt’s inequality, and the Poisson summation formula. This work is motivated by the potential applications of the QHFTs and the analysis of the corresponding hyperbolic quaternionic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Atigh, M.G., Schoep, J., Acar, E., Van Noord, N., Mettes, P.: Hyperbolic Image Segmentation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4443–4452 (2022)

  2. Bas, P., Le Bihan, N., Chassery, J.M.: Color image water marking using quaternion Fourier transform. In: Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, ICASSP, Hong-Kong, pp. 521–524 (2003)

  3. Bayro-Corrochano, E.: Multi-resolution image analysis using the quaternion wavelet transform. Numer. Algorithms 39(1–3), 35–55 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bayro-Corrochano, E.: The theory and use of the quaternion wavelet transform. J. Math. Imaging Vis. 24, 19–35 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bayro-Corrochano, E., Trujillo, N., Naranjo, M.: Quaternion Fourier descriptors for preprocessing and recognition of spoken words using images of spatiotemporal representations. J. Math. Imaging Vis. 28(2), 179–190 (2007)

    Article  MathSciNet  Google Scholar 

  6. Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Amer. Math. Soc. 123, 1897–1905 (1995)

    MathSciNet  Google Scholar 

  7. Beckner, W.: Pitt’s inequality with sharp convolution estimates. Proc. Amer. Math. Soc. 136, 1871–1885 (2008)

    Article  MathSciNet  Google Scholar 

  8. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Pitman Advanced Publishing Program (1982)

  9. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of images. Christian-Albrechts University, Kiel, Germany, Ph.D. diss. (1999)

  10. Bülow, T., Felsberg, M., Sommer, G.: Non-commutative hypercomplex Fourier transforms of multidimensional signals. In: Sommer, G. (ed.) Geom, pp. 187–207. Comp. Clifford Alg, Springer, Berlin, Heidelberg (2001)

  11. Brackx, F., Hitzer, E., Sangwine, S.J.: History of quaternion and Clifford Fourier transforms and wavelets. In: Hitzer, E., Sangwine, S. (eds.) Quaternion and Clifford Fourier Transforms and Wavelets. Trends in Mathematics Series, Vol. 27, Springer Basel AG, pp. XI–XXVII (2013)

  12. Chen, L.P., Kou, K.I., Liu, M.S.: Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform. J. Math. Anal. Appl. 423(1), 681–700 (2015)

    Article  MathSciNet  Google Scholar 

  13. Cheng, D., Kou, K.I.: Properties of quaternion Fourier transforms (2016), arXiv:1607.05100v1

  14. Cheng, D., Kou, K.: Generalized sampling expansions associated with quaternion Fourier transform. Math. Methods Appl. Sci. 41(11), 4021–4032 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  15. Cheng, D., Kou, K.I.: Plancherel theorem and quaternion Fourier transform for square integrable functions. Complex Var. Elliptic Equ. 64(2), 223–242 (2019)

    Article  MathSciNet  Google Scholar 

  16. Delsuc, M.A.: Spectral representation of 2D NMR spectra by hypercomplex numbers. J. Magn. Reson. 77(1), 119–124 (1988)

    ADS  Google Scholar 

  17. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  18. Ell, T.: Hypercomplex Spectral Transformations, University of Minnesota, University Microfilms International Number 9231031, Ph.D. thesis (1992)

  19. Ell, T.A.: Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In: Proceedings of the 32nd IEEE Conference on Decision Control, pp. 1830–1841 (1993)

  20. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16, 22–35 (2007)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  21. Ell, T.A., Le Bihan, N., Sangwine, S.J.: Quaternion Fourier transforms for signal and image processing. Wiley (2014)

  22. Ernst, R.R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford University Press, International Series of Monographs on Chemistry (1987)

  23. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    Article  MathSciNet  Google Scholar 

  24. Ferreira, M.: Harmonic analysis on the Möbius gyrogroup. J. Fourier Anal. Appl. 21(2), 281–317 (2015)

    Article  MathSciNet  Google Scholar 

  25. Gürlebeck, K., Habetha, K., Sprössig, W.: Application of Holomorphic Functions in Two and Higher Dimensions. Birkhäuser Verlag, Basel-Boston-Berlin (2016)

    Book  Google Scholar 

  26. Helgason, S.: Radon-Fourier transforms on symmetric spaces and related group representations. Bull. Amer. Math. Soc. 71, 757–763 (1965)

    Article  MathSciNet  Google Scholar 

  27. Helgason, S.: A duality for symmetric spaces with applications to group representations. Adv. Math. 5, 1–154 (1970)

    Article  MathSciNet  Google Scholar 

  28. Helgason, S.: Geometric Analysis on Symmetric Spaces, Math. Surveys and Monographs 39 (American Mathematical Society, Providence RJ (1994)

  29. Hitzer, E., Mawardi, B.: Uncertainty principle for the Clifford geometric algebra based on Clifford Fourier transform, in Wavelet Analysis and Applications. In: Qian, T., Vai, M.I., Xu, Y. (eds.) Applied and Numerical Harmonic Analysis, pp. 45–54. Springer, Berlin, Germany (2006)

    Google Scholar 

  30. Hitzer, E.: Quaternion Fourier transform on quaternions fields and generalizations. Adv. Appl. Clifford Algebr. 17(3), 497–517 (2007)

    Article  MathSciNet  Google Scholar 

  31. Hitzer, E.: Tutorial on Fourier transformations and wavelet transformations in Clifford geometric algebra. In Tachibana, K. (ed.) Lecture notes of the International Workshop for Computational Science with Geometric Algebra (FCSGA2007), pp. 65–87 (2007)

  32. Hitzer, E., Mawardi, B.: Clifford fourier transform on multivector fields and uncertainty principles for dimensions \(n = 2\) (mod \(4\)) and \(n = 3\) (mod \(4\)). Adv. Appl. Clifford Algebr. 18, 715–736 (2008)

    Article  MathSciNet  Google Scholar 

  33. Hitzer, E.: Directional uncertainty principle for quaternion Fourier transforms. Adv. Appl. Clifford Algebr. 20(2), 271–284 (2010)

    Article  MathSciNet  Google Scholar 

  34. Hitzer, E.: Quaternion and Clifford Fourier Transforms. CRC Press, Boca Raton, FL (2022)

    Google Scholar 

  35. Khrulkov, V., Mirvakhabova, L., Ustinova, E., Oseledets, I., Lempitsky, V.: Hyperbolic Image Embeddings. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6417–6427 (2020)

  36. Li , C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transform and singular convolution operators on lipschitz surfaces. In: A. McIntosh, Clifford Alg. Four. Theory, Sing. Integrals, and Harm. Functions on Lipschitz Dom. J. Ryan (ed.), Chap. 1 in Cliff. Alg. in Anal. and Rel. Topics, CRC Press (1996)

  37. Lian, P.: Uncertainty principle for the quaternion Fourier transform. J. Math. Anal. Appl. 467(2), 1258–1269 (2018)

    Article  MathSciNet  Google Scholar 

  38. Mawardi, B., Hitzer, E.: Clifford Fourier transform and uncertainty principle for the Clifford geometric algebra \(\cal{C} \ell _{0,3}\). Adv. App. Clifford Algebr. 16(1), 41–61 (2006)

    Article  Google Scholar 

  39. Mawardi, B., Hitzer, E., Hayashi, A., Ashino, R.: An uncertainty principle for quaternion Fourier transform. Comput. Math. Appl. 56(9), 2411–2417 (2008)

    MathSciNet  Google Scholar 

  40. Morais, J., Georgiev, S., Sprössig, W.: Real Quaternionic Calculus Handbook. Birkhäuser, Basel (2014)

    Book  Google Scholar 

  41. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 6338–6347. Curran Associates Inc, Long Beach, CA, USA (2017)

    Google Scholar 

  42. Pei, S., Ding, J., Chang, J.: Efficient implementation of quaternion Fourier transform convolution and correlation by 2-Dcomplex FFT. IEEE Trans. Signal Process. 49, 2783–2797 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  43. Petrov, V.E.: Integral transform on a segment. Problemy Matem. Analiza 31, (2005). pp. 67–95; English transl. J. Math. Sci. 132(4), pp. 451–481 (2006)

  44. Petrov, V.E.: The generalized singular Tricomi equation as a convolution equation. Dokl. Ros. Akad. Nauk 411(2), pp. 1–5, (2006); English transl. Dokl. Math. 74(3), pp. 901–905

  45. Said, S., Bihan, N.L., Sangwine, S.J.: Fast complexified quaternion Fourier transform. IEEE Trans. Signal Process. 56, 1522–1531 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. Sangwine, S.J., Ell, T.A.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  47. Sommen, F.: Hypercomplex Fourier and Laplace transforms I. Illinois J. Math. 26(2), 332–352 (1982)

    Article  MathSciNet  Google Scholar 

  48. Sommen, F.: Hypercomplex Fourier and Laplace transforms II. Complex Var. 1(2–3), 209–238 (1983)

    MathSciNet  Google Scholar 

  49. Yang, Y., Kou, K.: Novel uncertainty principles associated with 2D quaternion Fourier transforms. Integral Transform. Spec. Funct. 27(3), 213–226 (2016)

    Article  MathSciNet  Google Scholar 

  50. Zou, C., Kou, K., Morais, J.: Prolate spheroidal wave functions associated with the quaternionic Fourier transform. Math. Methods Appl. Sci. 41(11), 4003–4020 (2018)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

The work of M. Ferreira was supported by Portuguese funds through CIDMA-Center for Research and Development in Mathematics and Applications, and FCT—Fundação para a Ciência e a Tecnologia, within projects with DOI https://doi.org/10.54499/UIDB/04106/2020 and https://doi.org/10.54499/UIDP/04106/2020. The second author’s work was supported by the Asociación Mexicana de Cultura, A. C.

Author information

Authors and Affiliations

Authors

Contributions

M.F. and J.M. have discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to J. Morais.

Ethics declarations

Conflict on interest

The authors declare no conflict of interest.

Additional information

Communicated by Irene Sabadini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, and Daniele Struppa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M., Morais, J. Quaternion Hyperbolic Fourier Transforms and Uncertainty Principles. Complex Anal. Oper. Theory 18, 16 (2024). https://doi.org/10.1007/s11785-023-01451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01451-8

Keywords

Navigation