Skip to main content
Log in

The Exact Number of Orthogonal Exponentials of a Class of Moran Measures on \(\mathbb {R}^{3}\)

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we consider the nonspectralities of the Moran measure \(\mu _{M,\{D_{n}\}}\) corresponding to an expanding integer matrix \( M= {diag} [p,q,r] \) and the digit set

$$\begin{aligned} D_{n}=\left\{ {{\left( {\begin{array}{*{20}{c}} 0,0,0 \end{array}}\right) }^{T}}, {{\left( {\begin{array}{*{20}{c}} a_{n},0,0\\ \end{array}}\right) }^{T}},{{\left( {\begin{array}{*{20}{c}} 0,b_{n},0\\ \end{array}}\right) }^{T}},{{\left( {\begin{array}{*{20}{c}} 0,0,c_{n}\\ \end{array}}\right) }^{T}}\right\} ,\end{aligned}$$

where \( p\in 2\mathbb {Z} \backslash \{0\} \), \( q,r \in (2\mathbb {Z}+1)\backslash \{1,-1\} \), \( a_{n},b_{n},c_{n}\in 2\mathbb {Z}+1 \) and \( \frac{b_{n}}{c_{n}}=\frac{b_{m}}{c_{m}} \). If \( q=r \), we prove that there exists at most 4 mutually orthogonal exponential functions in the Hilbert space \( L^{2}(\mu _{M,\{D_{n}\}}) \), where the number 4 is the best upper bound. If \( q=-r \), then there exists at most 8 mutually orthogonal exponential functions in the Hilbert space \( L^{2}(\mu _{M,\{D_{n}\}}) \), where the number 8 is the best upper bound. If \( |q|\ne |r| \), then there is any number of orthogonal exponentials in \( L^{2}(\mu _{M,\{D_{n}\}}) \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, L.X., Fu, X.Y., Lai, C.K.: On spectral Cantor-Moran measures and a variant of Bourgain‘s sum of sine problem. Adv. Math. 349, 84–124 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, L.X., He, X.G.: A class of spectral Moran measures. J. Funct. Anal. 266(1), 343–354 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. An, L.X., He, L., He, X.G.: Spectrality and non-spectrality of the Riesz product measures with three elements in digit sets. J. Funct. Anal. 277(1), 255–278 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Tang, M.W.: Spectrality and non-spectrality of planar self-similar measures with four-element digit sets. Fractals. 28, 2050130 (2020)

    Article  MATH  Google Scholar 

  5. Chen, M.L., Liu, J.C., Su, J., Wang, X.Y.: Spectrality of a class of Moran measures. Canad. Math. Bull. 63(2), 366–381 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dutkay, D.E., Haussermann, J., Lai, C.K.: Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc. 371(2), 1439–1481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dutkay, D.E., Jorgensen, P.E.T.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256(4), 801–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dutkay, D.E., Jorgensen, P.E.T.: Duality questions for operators, spectrum and measures. Acta Appl. Math. 108(3), 515–528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, Q.R., Lau, K.S.: Sierpinski-type spectral self-similar measures. J. Funct. Anal. 269(5), 1310–1326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dai, X.R., Fu, X.Y., Yan, Z.H.: Spectrality of self-affine Sierpinski-type measures on \(\mathbb{R} ^2\). Appl. Comput. Harmon. Anal. 52, 63–81 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, X.R.: When does a Bernoulli convolution admit a spectrum? Adv. Math. 231(3–4), 1681–1693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, X.R., He, X.G., Lau, K.S.: On spectral \(N\)-Bernoulli measures. Adv. Math. 259, 511–531 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng,Q.R., Li,M.T.: Spectrality of Moran-type self-similar measures on \(\mathbb{R}\). J. Math. Anal. Appl. 506(1), Paper No. 125547 (2022)

  14. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Falconer,K.J.: Fractal geometry. Mathematical Foundations and Applications. 2nd ed. Wiley, Hoboken, New Jersey, USA (2003)

  16. Fu, Y.S., Wen, Z.X.: Spectral property of a class of Moran measures on \(\mathbb{R} \). J. Math. Anal. Appl. 430(1), 572–584 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, T.Y., Lau, K.S.: Spectral property of the Bernoulli convolutions. Adv. Math. 219(2), 554–567 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. He, L., He, X.G.: On the Fourier orthonormal bases of Cantor-Moran measure. J. Funct. Anal. 272(5), 1980–2004 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jorgensen, P., Pedersen, S.: Dense analytic subspaces in fractal \( L^{2} \)-spaces. J. Anal. Math. 75, 185–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jorgensen, P.E.T., Pedersen, S.: Harmonic analysis of fractal measures. Constr. Approx. 12(1), 1–30 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jorgensen,P.E.T., Kornelson,K., Shuman,K.: Orthogonal exponentials for Bernoulli iterated function systems. Appl. Numer. Harmon. Anal. (2008), pp. 217–237

  23. Li, J.L.: Non-spectrality of self-affine measures on the spatial Sierpinski gasket. J. Math. Anal. Appl. 432(2), 1005–1017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J.L.: Non-spectrality of planar self-affine measures with three-elements digit set. J. Funct. Anal. 257(2), 537–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.L.: Spectral self-affine measures on the spatial Sierpinski gasket. Monatsh. Math. 176(2), 293–322 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu, Z.Y., Dong, X.H., Zhang, P.F.: Non-spectrality of self-affine measures on the three-dimensional Sierpinski gasket. Forum Math. 31(6), 1447–1455 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, Z.Y., Dong, X.H.: Spectrality of a class of Moran measures. Monatsh. Math. 196(1), 207–230 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strichartz, R.: Mock Fourier series and transforms associated with certain Cantor measures. J. Anal. Math. 81, 209–238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, R.X.: Spectrality of a class of Cantor-Moran measures. J. Funct. Anal. 276(12), 3767–3794 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, M.W., Yin, F.L.: Spectrality of Moran measures with four-element digit sets. J. Math. Anal. Appl. 461(1), 354–363 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Q., Li, J.L.: The maximal cardinality of \(\mu _{M, D}\)-orthogonal exponentials on the spatial Sierpinski gasket. Monatsh. Math. 191(1), 203–224 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Q., Li, J.L.: There are eight-element orthogonal exponentials on the spatial Sierpinski gasket. Math. Nachr. 292(1), 211–226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Q.: The exact number of orthogonal exponentials on the spatial Sierpinski gasket. Forum Math. 33(5), 1125–1136 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, Z.Y., Liu, J.C.: Non-spectrality of self-affine measures. J. Funct. Anal. 277(10), 3723–3736 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Z.Y., Dong, X.H., Liu, Z.S.: Spectrality of certain Moran measures with three-element digit sets. J. Math. Anal. Appl. 459(2), 743–752 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, H.H., Li, Y.M., Dong, X.H.: Spectral properties of certain Moran measures with consecutive and collinear digit sets. Forum Math. 32(3), 683–692 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang,X., Ai,W.H.: Spectrality and non-spectrality of some Moran measures in \( \mathbb{R}^{3} \). Ann. Funct. Anal. 13(4), Paper No. 56 (2022)

  38. Yan, Z.H.: Spectral Moran measures on \( \mathbb{R} ^{2} \). Nonlinearity 35(3), 1261–1285 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zheng,J., Liu,J.C., Chen,M.L.: The cardinality of orthogonal exponential functions on the spatial Sierpinski gasket. Fractals 27(4), 1950056 (2019)

Download references

Acknowledgements

The research is supported in part by the NSFC (Nos. 12201206, 11831007).

Author information

Authors and Affiliations

Authors

Contributions

JLC and WHA wrote the main manuscript text and SNZ simpliyfied some proofs. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wen-Hui Ai.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Palle Jorgensen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Harmonic Analysis and Operator Theory” edited by H. Turgay Kaptanoglu, Andreas Seeger, Franz Luef and Serap Oztop.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JL., Ai, WH. & Zeng, SN. The Exact Number of Orthogonal Exponentials of a Class of Moran Measures on \(\mathbb {R}^{3}\). Complex Anal. Oper. Theory 17, 34 (2023). https://doi.org/10.1007/s11785-023-01337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01337-9

Keywords

Mathematics Subject Classification

Navigation