Skip to main content
Log in

Segal–Bargmann Transforms Associated to a Family of Coupled Supersymmetries

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The Segal–Bargmann transform is a Lie algebra and Hilbert space isomorphism between real and complex representations of the oscillator algebra. The Segal–Bargmann transform is useful in time-frequency analysis as it is closely related to the short-time Fourier transform. The Segal–Bargmann space provides a useful example of a reproducing kernel Hilbert space. Coupled supersymmetries (coupled SUSYs) are generalizations of the quantum harmonic oscillator that have a built-in supersymmetric nature and enjoy similar properties to the quantum harmonic oscillator. In this paper, we will develop Segal–Bargmann transforms for a specific class of coupled SUSYs which includes the quantum harmonic oscillator as a special case. We will show that the associated Segal–Bargmann spaces are distinct from the usual Segal–Bargmann space: their associated weight functions are no longer Gaussian and are spanned by stricter subsets of the holomorphic polynomials. The coupled SUSY Segal–Bargmann spaces provide new examples of reproducing kernel Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akhiezer, N.I.: Lectures on Integral Transforms. American Mathematical Society (1988)

  2. Alpay, D., Colombo, F., Sabadini, I., Salomon, G.: The Fock Space in the Slice Hyperholomorphic Setting. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds) Hypercomplex Analysis: New Perspectives and Applications, pp. 43–59. Springer (2014)

  3. Alpay, D., Porat, M.: Generalized Fock spaces and the Stirling numbers. J. Math. Phys. 59(6), 063509 (2018)

    Article  MathSciNet  Google Scholar 

  4. Barbier, S., Claerebout., S.: A Schrödinger model, Fock model and Intertwining Segal-Bargmann Transform for the Exceptional Lie Superalgebra \(D(2,1;\alpha )\). J. Lie Theory 31(4), 1153–1188 (2021)

  5. Barbier, S., Claerebout, S., De Bie, H.: A Fock model and the segal-bargmann transform for the minimal representation of the orthosymplectic Lie superalgebra \(\mathfrak{osp}(m,2|2n)\). Symmetry, Integrability, and Geometry: Methods and Applications, 16 (2020)

  6. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform part I. Commun. Pure Appl. Math. 14(3), 187–214 (1961)

    Article  Google Scholar 

  7. Bargmann, V.: On a Hilbert space of analytie functions and an associated integral transform. Part II. A family of related function spaces application to distribution theory. Commun. Pure Appl. Math., 20(1), 1–101 (1967)

  8. Barut, A.O., Girardello, L.: New “Coherent” States associated with non-compact groups. Commun. Math. Phys. 21, 41–55 (1971)

  9. Brif, C.: SU(2) and SU(1,1) algebra eigenstates: a unified analytic approach to coherent and intelligent states. Int. J. Theor. Phys. 36(7), 1651–1682 (1997)

    Article  MathSciNet  Google Scholar 

  10. Chan, A.Z.: The Segal–Bargmann transform on classical matrix Lie groups. J. Funct. Anal. 278(9), 108430 (2020)

    Article  MathSciNet  Google Scholar 

  11. Cnudde, L., De Bie, H.: Slice Segal–Bargmann transform. J. Phys. A: Math. Theor. 50(25), 255207 (2017)

  12. Cooper, F., Khare A., Sukhatme, U.: Supersymmetry and quantum mechanics. Phys. Rep. 251(5), 267–385 (1995)

  13. David, J., Fernandez, C.: Supersymmetric quantum mechanics. AIP Conf. Proc. 1287(1), 3–36 (2010)

    Article  Google Scholar 

  14. De Martino, A., Diki, M.: On the quaternionic short-time fourier and Segal–Bargmann transforms. Mediterranean J. Math. 18(3), (2021)

  15. Diki, K., Ghanmi, A.: A quaternionic analogue of the Segal–Bargmann transform. Complex Anal. Oper. Theory 11(2), 457–473 (2017)

    Article  MathSciNet  Google Scholar 

  16. Driver, B.K., Hall, B.C., Kemp, T.: The complex-time Segal–Bargmann transform. J. Funct. Anal. 278(1), 108303 (2020)

    Article  MathSciNet  Google Scholar 

  17. Eaknipitsari, S., Lewkeeratiyutkul, W.: Clifford algebra-valued Segal–Bargmann transform and Taylor isomorphism. Adv. Appl. Clifford Algebras, 31(5) (2021)

  18. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser (2000)

  19. Hall, B.C.: Holomorphic Methods in Mathematical Physics

  20. Hall, B.C.: The Segal–Bargmann “Coherent State” transform for compact lie groups. J. Funct. Anal. 122(1), 103–151 (1994)

  21. Hall, B.C.: Geometric quantization and the generalized Segal–Bargmann transform for lie groups of compact type. Commun. Math. Phys. 226(2), 233–268 (2002)

    Article  MathSciNet  Google Scholar 

  22. Hilgert, J., Kobayashi, T., Möllers, J., Ørsted, B.: Fock model and Segal–Bargmann transform for minimal representations of Hermitian lie groups. J. Funct. Anal. 263(11), 3492–3563 (2012)

    Article  MathSciNet  Google Scholar 

  23. Hilgert, J., Zhang, G.: Segal–Bargmann and Weyl transforms on compact lie groups. Monatshefte für Math. 158, 285–305 (2009)

    Article  MathSciNet  Google Scholar 

  24. Kirwin, W.D., Mourão, J.M., Nunes, J.P.: Complex time evolution in geometric quantization and generalized coherent state transforms. J. Funct. Anal. 265(8), 1460–1493 (2013)

    Article  MathSciNet  Google Scholar 

  25. Mourão, J., Nunes, J.P., Qian, T.: Coherent state transforms and the Weyl equation in Clifford analysis. J. Math. Phys. 58(1), 013503 (2017)

    Article  MathSciNet  Google Scholar 

  26. Oliver, F., Lozier, D., Boisvert, R., Clark, C.: The NIST Handbook of Mathematical Functions. Cambridge University Press (2021)

  27. Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2016)

  28. Rosenfeld, J.A., Russo, B., Dixon, W.E.: The Mittag Leffler reproducing kernel Hilbert spaces of entire and analytic functions. J. Math. Anal. Appl. 463(2), 576–592 (2018)

    Article  MathSciNet  Google Scholar 

  29. Segal, I.E.: Mathematical Problems of Relativistic Physics. American Mathematical Society, 2 edition (1963)

  30. Stenzel, M.B.: The Segal–Bargmann transform on a symmetric space of compact type. J. Funct. Anal. 165(1), 44–58 (1999)

    Article  MathSciNet  Google Scholar 

  31. Streater, R.F.: The representations of the oscillator group. Commun. Math. Phys. 4(3), 217–236 (1967)

    Article  MathSciNet  Google Scholar 

  32. Thienel, H.P.: A generalization of the Bargmann–Fock representation to supersymmetry by holomorphic differential geometry. J. Phys. A 29, 6983 (1996)

    Article  MathSciNet  Google Scholar 

  33. van Leeuwen, H., Maassen, H.: A q deformation of the gauss distribution. J. Math. Phys. 36(9), 4743–4756 (1995)

  34. Williams, C.L., Bodmann, B.G., Kouri, D.J.: Fourier and beyond: invariance properties of a family of Fourier-like integral transforms. J. Fourier Anal. Appl., page to appear

  35. Williams, C.L., Pandya, N.N., Bodmann, B.G., Kouri, D.J.: Coupled supersymmetry and ladder structures beyond the harmonic oscillator. Mol. Phys. 116(19–20), 2599–2612 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. John R. Klauder for the suggestion for this avenue of research and the late Dr. Donald J. Kouri for his mentorship in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron L. Williams.

Ethics declarations

Conflict of interest

The author reports there are no competing interests to declare.

Additional information

Communicated by Daniel Alpay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Reproducing kernel spaces and applications” edited by Daniel Alpay.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, C.L. Segal–Bargmann Transforms Associated to a Family of Coupled Supersymmetries. Complex Anal. Oper. Theory 16, 94 (2022). https://doi.org/10.1007/s11785-022-01272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01272-1

Keywords

Mathematics Subject Classification

Navigation