Skip to main content
Log in

The Twistor Space of \({\mathbb {R}}^{4n}\) and Berezin–Toeplitz Operators

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

A hyperkähler manifold M has a family of induced complex structures indexed by a two-dimensional sphere \(S^2 \cong \mathbb {CP}^1\). The twistor space of M is a complex manifold \({{\,\mathrm{Tw}\,}}(M)\) together with a natural holomorphic projection \({{\,\mathrm{Tw}\,}}(M) \rightarrow \mathbb {CP}^1\), whose fiber over each point of \(\mathbb {CP}^1\) is a copy of M with the corresponding induced complex structure. We remove one point from this sphere (corresponding to one fiber in the twistor space), and for the case of \(M = {\mathbb {R}}^{4n}\), \(n\in {{\mathbb {N}}}\), equipped with the standard hyperkähler structure, we construct one quantization that replaces the family of Berezin–Toeplitz quantizations parametrized by \(S^2-\{ pt\}\). We provide semiclassical asymptotics for this quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

This manuscript has no associated data.

References

  1. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis and Applications. Addison-Wesley Publishing Co, Reading (1983)

    MATH  Google Scholar 

  2. Atiyah, M., Hitchin, N., Singer, I.: Self-duality in four-dimensional Riemannian geometry. Proc. R. Soc. Lond. Ser. A 362(1711), 425–461 (1978)

    Article  MathSciNet  Google Scholar 

  3. Barron, T.: Toeplitz Operators on Kähler Manifolds. Examples. SpringerBriefs in Mathematics. Springer, Cham (2018)

    Book  Google Scholar 

  4. Barron, T., Serajelahi. B.: Berezin–Toeplitz quantization, hyperkähler manifolds, and multisymplectic manifolds. Glasg. Math. J. 59(1), 167–187 (2017). arXiv:1406.5159

  5. Berger, C., Coburn, L.: Toeplitz operators and quantum mechanics. J. Funct. Anal. 68(3), 273–299 (1986)

    Article  MathSciNet  Google Scholar 

  6. Castejón Díaz, H.: Berezin–Toeplitz quantization on \(K3\) surfaces and hyperkähler Berezin–Toeplitz quantization. Ph.D. Thesis, Université du Luxembourg (2016)

  7. Coburn, L.: Deformation estimates for the Berezin–Toeplitz quantization. Commun. Math. Phys. 149, 415–424 (1992)

    Article  MathSciNet  Google Scholar 

  8. Conway, J.: Functions of One Complex Variable, 2nd edn. Springer, New York (1978)

    Book  Google Scholar 

  9. Hitchin, N.: On the hyperkähler/quaternion Kähler correspondence. Commun. Math. Phys. 324(1), 77–106 (2013)

    Article  Google Scholar 

  10. Hitchin, N.: The hyperholomorphic line bundle. In: Algebraic and Complex Geometry. Springer Proceedings of Mathematics and Statistics, vol. 71, Springer, Cham, pp. 209–223 (2014)

  11. Kaledin, D.: Integrability of the twistor space for a hypercomplex manifold. Selecta Math. (NS) 4(2), 271–278 (1998)

    Article  MathSciNet  Google Scholar 

  12. Kaledin, D., Verbitsky, M.: Non-Hermitian Yang–Mills connections. Selecta Math. (N.S.) 4, 279–320 (1998)

    Article  MathSciNet  Google Scholar 

  13. Krantz, S.: Function Theory of Several Complex Variables, 2nd edn. The Wadsworth and Brooks/Cole Mathematics Series, Pacific Grove (1992)

    MATH  Google Scholar 

  14. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, New York (1998)

    MATH  Google Scholar 

  15. Penrose, R.: Twistor quantization and curved space-time. Int. J. Theor. Phys. 1(1), 61–99 (1968)

    Article  Google Scholar 

  16. Penrose, R.: The central programme of twistor theory. Chaos Solitons Fractals 10(2–3), 581–611 (1999)

    Article  MathSciNet  Google Scholar 

  17. Salamon, S.: Quaternionic Kähler manifolds. Invent. Math. 67(1), 143–171 (1982)

    Article  MathSciNet  Google Scholar 

  18. Tomberg, A.: Twistor spaces of hypercomplex manifolds are balanced. Adv. Math. 280, 282–300 (2015)

    Article  MathSciNet  Google Scholar 

  19. Verbitsky, M.: Hyperkähler embeddings and holomorphic symplectic geometry II. GAFA 5(1), 92–104 (1995)

    MathSciNet  Google Scholar 

  20. Verbitsky, M.: Degenerate twistor spaces for hyperkähler manifolds. J. Geom. Phys. 91, 2–11 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Barron.

Additional information

Communicated by Nikolai Vasilevski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported in part by the Natural Sciences and Engineering Research Council of Canada.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barron, T., Tomberg, A. The Twistor Space of \({\mathbb {R}}^{4n}\) and Berezin–Toeplitz Operators. Complex Anal. Oper. Theory 16, 28 (2022). https://doi.org/10.1007/s11785-022-01207-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01207-w

Keywords

Mathematics Subject Classification

Navigation