Ara, M.: Geometry of \(F\)-harmonic maps. Kodai Math. J. 22(2), 243–263 (1999)
MathSciNet
Article
Google Scholar
Ara, M.: Stability of \(F\)-harmonic maps into pinched manifolds. Hiroshima Math. J. 31(1), 171–181 (2001)
MathSciNet
Article
Google Scholar
Ara, M.: Instability and nonexistence theorems for F-harmonic maps. Ill. J. Math. 45(2), 657–679 (2001)
MathSciNet
Article
Google Scholar
Aribi, A., Dragomir, S., El Soufi, A.: On the continuity of the eigenvalues of a sublaplacian. Can. Math. Bull. 57(1), 12–24 (2014)
MathSciNet
Article
Google Scholar
Aribi, A., Dragomir, S., El Soufi, A.: Eigenvalues of the sublaplacian and deformations of contact structures on a compact CR manifold. Differ. Geom. Appl. 39, 113–128 (2015)
Article
Google Scholar
Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6(28), 551–561 (1966)
MathSciNet
MATH
Google Scholar
Barletta, E.: Subelliptic \(F\)-harmonic maps. Riv. Mat. Parma 2(7), 33–50 (2003)
MathSciNet
MATH
Google Scholar
Barletta, E., Dragomir, S., Urakawa, H.: Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds. Indiana Univ. Math. J. 50, 719–746 (2001)
MathSciNet
Article
Google Scholar
Barletta, E., Dragomir, S., Jacobowitz, H., Soret, M.: \(b\)-completion of pseudo-Hermitian manifolds. Class. Quantum Gravity 29, 095007 (27 pp) (2012)
MathSciNet
Article
Google Scholar
Barletta, E., Dragomir, S., Jacobowitz, H.: Gravitational field equations on Fefferman space-times. Complex Anal. Oper. Theory 11, 1685–1713 (2017)
MathSciNet
Article
Google Scholar
Barletta, E., Dragomir, S., Magliaro, M.: Wave maps from Gödel’s universe. Class. Quantum Gravity 39(19), 195001 (52 pp) (2014)
MATH
Google Scholar
Bony, M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier Grenoble 1(19), 277–304 (1969)
Article
Google Scholar
Boutet de Monvel, L.: Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations aux derivées partielles linéaires et non linéaires, pp. Exp. No. 9, 14 pp. Centre Math., École Polytech., Paris (1975)
Chiang, Y.-J.: Exponentially harmonic maps and their properties. Math. Nachr. 288(17–18), 1970–1980 (2015)
MathSciNet
Article
Google Scholar
Chiang, Y.-J., Yang, Y.: Exponential wave maps. J. Geom. Phys. 57(12), 2521–2532 (2007)
MathSciNet
Article
Google Scholar
Chiang, Y.-J., Dragomir, S., Esposito, F.: Exponentially subelliptic harmonic maps from the Heisenberg group into a sphere. Calc. Var. Partial Differ. Equ. 58, 125 (2019)
MathSciNet
Article
Google Scholar
Danielli, D., Garofalo, N., Nhieu, D-M.: Non doubling Ahlfors measures, perimeter measures, the characterization of the trace spaces of Sobolev functions in Carnot–Carathéodory spaces. Mem. Am. Math. Soc. 182(857) (2006)
Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds, Progress in Mathematics, vol. 246. Birkhäuser, Boston (2006)
MATH
Google Scholar
Dragomir, S., Perrone, D.: Levi harmonic maps of contact Riemannian manifolds. J. Geom. Anal. 24(3), 1233–1275 (2014)
MathSciNet
Article
Google Scholar
Duan, Y.: Harmonic maps and their application to general relativity. SLAC-PUB-3265, December 1983 (T), Stanford Linear Accelerator Center, Stanford, CA (unpublished)
Eells, J.: On the mathematical contribution of Giorgio Valli. Rendiconti di Matematica, Ser. VII, vol. 22, Roma, pp. 147–158 (2002)
Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20, 385–524 (1988)
MathSciNet
Article
Google Scholar
Eells, J., Lemaire, L.: Some properties of exponentially harmonic maps. In: Partial Differential Equations, Banach Center Publications, vol. 27, Institute of Mathematics, Polish Academy of Sciences, Warszawa, pp. 129–136 (1992)
Graham, C.R.: On Sparling’s characterization of Fefferman metrics. Am. J. Math. 109, 853–874 (1987)
MathSciNet
Article
Google Scholar
Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)
MathSciNet
Article
Google Scholar
Lee, J.M.: The Fefferman metric and pseudohermitian invariants. Trans. A.M.S. 296(1), 411–429 (1986)
MATH
Google Scholar
Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. A 264, 413–496 (1969)
MathSciNet
Article
Google Scholar
Menikoff, A., Sjöstrand, J.: On the eigenvalues of a class of hypoelliptic operators. Math. Ann. 235, 55–58 (1978)
MathSciNet
Article
Google Scholar
Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, 259, ISBN: 978-0-8218-4165-5 (2002)
Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113, 1–24 (1981)
MathSciNet
Article
Google Scholar
Smith, R.T.: The second variation formula for harmonic mappings. Proc. Am. Math. Soc. 47(1), 229–236 (1975)
MathSciNet
Article
Google Scholar
Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)
MathSciNet
Article
Google Scholar
Jost, J., Xu, C.-J.: Subelliptic harmonic maps. Trans. Am. Math. Soc. 350(11), 4633–4649 (1998)
MathSciNet
Article
Google Scholar