Quantitative Estimates for Differences of Baskakov-Type Operators

Abstract

In the present paper, we establish the quantitative estimates in terms of weighted modulus of continuity, for the differences of Baskakov operators with Baskakov–Szász operators, Baskakov–Kantorovich operators and Genuine Baskakov–Durrmeyer type operators. Also, we find the estimates for the mutual differences of these operators. Finally, we provide an estimate for the difference of operators by direct method.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Acar, T., Aral, A., Raşa, I.: The new forms of Voronovskaja’s theorem in weighted spaces. Positivity 20, 25–40 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Acu, A.M., Raşa, I.: New estimates for differences of positive linear operators. Numer. Algorithms 73, 775–789 (2016)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Aral, A., Inoan D., and Raşa, I.: On differences of linear positive operators. Anal. Math. Phys. https://doi.org/10.1007/s13324-018-0227-7

    MathSciNet  Article  Google Scholar 

  4. 4.

    Finta, Z.: On converse approximation theorems. J. Math. Anal. Appl. 312, 159–180 (2005)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Gonska, H., Pitul, P., Raşa, I.: On differences of positive linear operators. Carpathian J. Math. 22(1–2), 65–78 (2006)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Gonska, H., Raşa, I.: Differences of positive linear operators and the second order modulus. Carpathian J. Math. 24(3), 332–340 (2008)

    MATH  Google Scholar 

  7. 7.

    Gupta, V.: A note on modified Baskakov type operators. Approx. Theory Appl. 10(3), 74–78 (1994)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Gupta, V.: Differences of operators of Lupaş type. Constr. Math. Anal. 1(1), 9–14 (2018)

    Google Scholar 

  9. 9.

    Gupta, V.: General estimates for the difference of operators. Comput. Math. Methods 1(2), e1018 (2019). https://doi.org/10.1002/cmm4.1018

    Article  Google Scholar 

  10. 10.

    Gupta, V.: On difference of operators with applications to Szász type operators. RACSAM 113, 2059–2071 (2018). https://doi.org/10.1007/s13398-018-0605-x

    Article  MATH  Google Scholar 

  11. 11.

    Gupta, V., Rassias, T.M., Agrawal, P.N., Acu, A.M.: Recent Advances in Constructive Approximation Theory. Springer, Cham (2018)

    Google Scholar 

  12. 12.

    Gupta, V., Srivastava, G.S.: Simultaneous approximation by Baskakov-Szász type operators. Bull. Math. Soc. Sci. Math. Roum. 37(85), 73–85 (1993)

    MATH  Google Scholar 

  13. 13.

    Zhang, C., Zhu, Z.: Preservation properties of Baskakov-Kantorovich operators. Comput. Math. Appl. 57, 1450–1455 (2009)

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Th. Rassias.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Ronen Peretz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Agrawal, D. & Rassias, M.T. Quantitative Estimates for Differences of Baskakov-Type Operators. Complex Anal. Oper. Theory 13, 4045–4064 (2019). https://doi.org/10.1007/s11785-019-00950-x

Download citation

Keywords

  • Baskakov–Szász operators
  • Modulus of continuity
  • Baskakov–Kantorovich operators
  • Genuine Baskakov–Durrmeyer type operators