Quantitative Estimates for Differences of Baskakov-Type Operators

  • Vijay Gupta
  • Deepika Agrawal
  • Michael Th. RassiasEmail author


In the present paper, we establish the quantitative estimates in terms of weighted modulus of continuity, for the differences of Baskakov operators with Baskakov–Szász operators, Baskakov–Kantorovich operators and Genuine Baskakov–Durrmeyer type operators. Also, we find the estimates for the mutual differences of these operators. Finally, we provide an estimate for the difference of operators by direct method.


Baskakov–Szász operators Modulus of continuity Baskakov–Kantorovich operators Genuine Baskakov–Durrmeyer type operators 



  1. 1.
    Acar, T., Aral, A., Raşa, I.: The new forms of Voronovskaja’s theorem in weighted spaces. Positivity 20, 25–40 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acu, A.M., Raşa, I.: New estimates for differences of positive linear operators. Numer. Algorithms 73, 775–789 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aral, A., Inoan D., and Raşa, I.: On differences of linear positive operators. Anal. Math. Phys.
  4. 4.
    Finta, Z.: On converse approximation theorems. J. Math. Anal. Appl. 312, 159–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gonska, H., Pitul, P., Raşa, I.: On differences of positive linear operators. Carpathian J. Math. 22(1–2), 65–78 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gonska, H., Raşa, I.: Differences of positive linear operators and the second order modulus. Carpathian J. Math. 24(3), 332–340 (2008)zbMATHGoogle Scholar
  7. 7.
    Gupta, V.: A note on modified Baskakov type operators. Approx. Theory Appl. 10(3), 74–78 (1994)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gupta, V.: Differences of operators of Lupaş type. Constr. Math. Anal. 1(1), 9–14 (2018)Google Scholar
  9. 9.
    Gupta, V.: General estimates for the difference of operators. Comput. Math. Methods 1(2), e1018 (2019). CrossRefGoogle Scholar
  10. 10.
    Gupta, V.: On difference of operators with applications to Szász type operators. RACSAM 113, 2059–2071 (2018). CrossRefzbMATHGoogle Scholar
  11. 11.
    Gupta, V., Rassias, T.M., Agrawal, P.N., Acu, A.M.: Recent Advances in Constructive Approximation Theory. Springer, Cham (2018)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gupta, V., Srivastava, G.S.: Simultaneous approximation by Baskakov-Szász type operators. Bull. Math. Soc. Sci. Math. Roum. 37(85), 73–85 (1993)zbMATHGoogle Scholar
  13. 13.
    Zhang, C., Zhu, Z.: Preservation properties of Baskakov-Kantorovich operators. Comput. Math. Appl. 57, 1450–1455 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vijay Gupta
    • 1
  • Deepika Agrawal
    • 1
  • Michael Th. Rassias
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of MathematicsNetaji Subhas University of Technology (Formerly Netaji Subhas Institute of Technology)New DelhiIndia
  2. 2.Institute of MathematicsUniversity of ZurichZurichSwitzerland
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  4. 4.Program in Interdisciplinary StudiesInstitute for Advanced StudyPrincetonUSA

Personalised recommendations