Skip to main content
Log in

A Class of Reverse Carleson Measures on Doubling Fock Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We characterize a class of reverse Carleson measures for a family of Fock spaces \(F^p_\phi \) induced by doubling weights. As an application, we obtain a characterization for invertible Toeplitz operators on \(F^2_\phi \) with positive symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christ, M.: On the \({\overline{\partial }}\) equation in weighted \(L^2\) norms in \({\mathbb{C}}^1\). J. Geom. Anal. 1(3), 193–230 (1991)

    Article  MathSciNet  Google Scholar 

  2. Lyubarski\(\breve{{\rm l}}\), Y.I., Seip, K.: Sampling and interpolation of entire functions and exponential systems in convex domains. Ark. Mat. 32, 157–193 (1994)

  3. Constantin, O., Ortega-Cerdà, J.: Some spectral properties of the canonical solution operator to \({\overline{\partial }}\) on weighted Fock spaces. J. Math. Anal. Appl. 377(1), 353–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hong, R.C.: Toeplitz operators on generalized Fock spaces. Bull. Korean Math. Soc. 53, 711–722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, Z., Lv, X.: Hankel operators on weighted Fock spaces. Sci. Sin. Math. 46, 141–156 (2016). (in Chinese)

    Google Scholar 

  6. Hu, Z., Lv, X.: Positive Toeplitz operators between different doubling Fock spaces. Taiwan. J. Math. 21, 467–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lou, Z., Zhu, K., Zhuo, Z.: Atomic decomposition and duality for a class of Fock spaces. Preprint (2017)

  8. Marco, N., Massaneda, X., Ortega-Cerdà, J.: Interpolating and sampling sequences for entire functions. Geom. Funct. Anal. 13(4), 862–914 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marzo, J., Ortega-Cerdà, J.: Pointwise estimates for the Bergman kernel of the weighted Fock space. J. Geom. Anal. 19(4), 890–910 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Oliver, R., Pascuas, D.: Toeplitz operators on doubling Fock spaces. J. Math. Anal. Appl. 435(2), 1426–1457 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, K.: Analysis on Fock Spaces. Springer, New York (2012)

    Book  MATH  Google Scholar 

  12. Luecking, D.: Closed ranged restriction operators on weighted Bergman spaces. Pac. J. Math. 110, 145–160 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luecking, D.: Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives. Am. J. Math. 107, 85–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luecking, D.: Inequalities on Bergman spaces. Ill. J. Math. 25, 1–11 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, Z., Zhao, X.: Invertibility of Fock Toeplitz operators with positive symbols. J. Math. Anal. Appl. 435(2), 1335–1351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the valuable suggestions and Professor K. Zhu (SUNY-Albany) for careful reading and English improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyuan Zhuo.

Additional information

Communicated by Vladimir Bolotnikov.

Research supported by NNSF of China (Grant Nos. 11571217, 11720101003 and 11871293) NSF of Guangdong Province (Grant No. 2018A030313512).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Zhuo, Z. A Class of Reverse Carleson Measures on Doubling Fock Spaces. Complex Anal. Oper. Theory 13, 1795–1809 (2019). https://doi.org/10.1007/s11785-018-0858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0858-6

Keywords

Mathematics Subject Classification

Navigation