Skip to main content
Log in

Cite this article

Abstract

In this paper, the notion of bi-Boolean independence for non-unital pairs of algebras is introduced thereby extending the notion of Boolean independence to pairs of algebras. The notion of B-\((\ell , r)\)-cumulants is defined via a bi-Boolean moment-cumulant formula over the lattice of bi-interval partitions, and it is demonstrated that bi-Boolean independence is equivalent to the vanishing of mixed B-\((\ell , r)\)-cumulants. Furthermore, some of the simplest bi-Boolean convolutions are considered, and a bi-Boolean partial \(\eta \)-transform is constructed for the study of limit theorems and infinite divisibility with respect to the additive bi-Boolean convolution. In particular, a bi-Boolean Lévy–Hinčin formula is derived in perfect analogy with the bi-free case, and some Bercovici–Pata type bijections are provided. Additional topics considered include the additive bi-Fermi convolution, some relations between the \((\ell , r)\)- and B-\((\ell , r)\)-cumulants, and bi-Boolean independence in an amalgamated setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Belinschi, S., Nica, A.: \(\eta \)-series and a Boolean Bercovici–Pata bijection for bounded \(k\)-tuples. Adv. Math. 217(1), 1–41 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bercovici, H.: On Boolean convolutions, operator theory 20. Theta Ser. Adv. Math. 6, 7–13 (2006)

    MATH  Google Scholar 

  3. Bercovici, H., Pata, V.: Stable laws and domains of attraction in free probability theory, with an appendix by P. Biane. Ann. Math. 149(3), 1023–1060 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42(3), 733–773 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bożejko, M., Leinert, M., Speicher, R.: Convolution and limit theorems for conditionally free random variables. Pac. J. Math. 175(2), 357–388 (1996)

    Article  MathSciNet  Google Scholar 

  6. Bożejko, M., Speicher, R.: \(\psi \)-independent and symmetrized white noises. In: Accardi, L. (ed.) Quantum Probability and Related Topics, vol. VI, pp. 219–236. World Scientific, Singapore (1991)

  7. Charlesworth, I., Nelson, B., Skoufranis, P.: Combinatorics of bi-freeness with amalgamation. Commun. Math. Phys. 338(2), 801–847 (2015)

    Article  MathSciNet  Google Scholar 

  8. Charlesworth, I., Nelson, B., Skoufranis, P.: On two-faced families of non-commutative random variables. Can. J. Math. 67(6), 1290–1325 (2015)

    Article  MathSciNet  Google Scholar 

  9. Franz, U.: Boolean convolution of probability measures on the unit circle. Anal. Probab. Sémin. Congr. 16, 83–94 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gu, Y., Skoufranis, P.: Conditionally bi-free independence for pairs of faces. J. Funct. Anal. 273(5), 1663–1733 (2017)

    Article  MathSciNet  Google Scholar 

  11. Gu, Y., Skoufranis, P.: Conditionally bi-free independence with amalgamation. Int. Math. Res. Not. (2018) (to appear). https://doi.org/10.1093/imrn/rnx104

    Article  MathSciNet  Google Scholar 

  12. Huang, H.-W., Wang, J.-C.: Analytic aspects of the bi-free partial \(R\)-transform. J. Funct. Anal. 271(4), 922–957 (2016)

    Article  MathSciNet  Google Scholar 

  13. Krystek, A.D.: Infinite divisibility for the conditionally free convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(4), 499–522 (2007)

    Article  MathSciNet  Google Scholar 

  14. Mastnak, M., Nica, A.: Double-ended queues and joint moments of left-right canonical operators on full Fock space. Int. J. Math. 262, 1550016 (2015)

    Article  MathSciNet  Google Scholar 

  15. Muraki, N.: The five independences as quasi-universal products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(1), 113–134 (2002)

    Article  MathSciNet  Google Scholar 

  16. Nica, A., Speicher, R.: On the multiplication of free \(N\)-tuples of noncommutative random variables, with an appendix by D. Voiculescu. Am. J. Math. 118(4), 799–837 (1996)

    Article  Google Scholar 

  17. Oravecz, F.: Fermi convolution. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5(2), 235–242 (2002)

    Article  MathSciNet  Google Scholar 

  18. Oravecz, F.: Minimality of the Boolean and the Fermi convolutions. Interdiscipl. Inform. Sci. 10(1), 59–67 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Popa, M.: A new proof for the multiplicative property of the boolean cumulants with applications to operator-valued case. Colloq. Math. 117(1), 81–93 (2009)

    Article  MathSciNet  Google Scholar 

  20. Skoufranis, P.: A combinatorial approach to Voiculescu’s bi-free partial transforms. Pac. J. Math. 283(2), 419–447 (2016)

    Article  MathSciNet  Google Scholar 

  21. Skoufranis, P.: Independences and partial \(R\)-transforms in bi-free probability. Ann. Inst. Henri Poincaré Probab. Stat. 52(3), 1437–1473 (2016)

    Article  MathSciNet  Google Scholar 

  22. Skoufranis, P.: On operator-valued bi-free distributions. Adv. Math. 303, 638–715 (2016)

    Article  MathSciNet  Google Scholar 

  23. Speicher, R.: Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298(1), 611–628 (1994)

    Article  MathSciNet  Google Scholar 

  24. Speicher, R.: On universal products. Fields Inst. Commun. 12, 257–266 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Speicher, R., Woroudi, R.: Boolean convolution. Fields Inst. Commun. 12, 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Voiculescu, D.: Free probability for pairs of faces I. Commun. Math. Phys. 332(3), 955–980 (2014)

    Article  MathSciNet  Google Scholar 

  27. Voiculescu, D.: Free probability for pairs of faces III: 2-variables bi-free partial \(S\)- and \(T\)-transforms. J. Funct. Anal. 270(10), 3623–3638 (2016)

    Article  MathSciNet  Google Scholar 

  28. Voiculescu, D.: The bi-free extension of free probability, series. In: Mathematical Analysis, Probability and Applications—Plenary Lectures. Springer Proceedings in Mathematics and Statistics, vol. 177, pp. 217-233. Springer International Publishing (2016)

  29. Wang, J.-C.: Limit theorems for additive conditionally free convolution. Can. J. Math. 63(1), 222–240 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the anonymous referee for a careful reading and detailed comments that improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinzheng Gu.

Additional information

Communicated by Hari Bercovici.

The work of Yinzheng Gu was partially supported by CIMI (Centre International de Mathématiques et d’Informatique) Excellence Program, ANR-11-LABX-0040-CIMI within the Program ANR-11-IDEX-0002-02, while visiting the Institute of Mathematics of Toulouse. He would like to thank the institute for the generous hospitality and Serban Belinschi for his constant support and valuable advice when this research was conducted.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Skoufranis, P. Bi-Boolean Independence for Pairs of Algebras. Complex Anal. Oper. Theory 13, 3023–3089 (2019). https://doi.org/10.1007/s11785-017-0750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0750-9

Keywords

Mathematics Subject Classification

Navigation