Skip to main content
Log in

Spectral Theory of Magnetic Berezin Transforms on the Complex Projective Space

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We define magnetic Berezin transforms on the complex projective space \(P(\mathbb {C}^{n})\) and we give a formula representing these transforms as functions of the Fubini–Study Laplacian. Then, we study their \(L^2\)-spectral theory. As an application, we propose an arithmetic formula for the linearization coefficients of some Jacobi polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askour, N.: A formula representing phase deformed magnetic berezin transforms as functions of the magnetic laplacian on \(\mathbb{C}^n\) (2012). arXiv:1210.7734

  2. Askour, N., Intissar, A., Mouayn, Z.: A formula representing magnetic berezin transforms as functions of the laplacian on \(\mathbb{C}^n\). Integral Transforms Spec. Funct. 22(11), 841–849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Askour, N., Intissar, A., Mouayn, Z.: Explicit formulas for reproducing kernels of generalized bargmann spaces on \(\mathbb{C}^n\). J. Math. Phys. 41(5), 3057–3067 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beals, R., Wong, R.: Special Functions: A Graduate Text, vol. 126. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  5. Berezin, F.A.: Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 38, 1116–1175 (1974)

    MathSciNet  Google Scholar 

  6. Berezin, F.A.: Quantization in complex symmetric spaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 363–402, 472 (1975)

    MathSciNet  MATH  Google Scholar 

  7. Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  8. Chaggara, H., Koepf, W.: On linearization coefficients of Jacobi polynomials. Appl. Math. Lett. 23(5), 609–614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, vol. 194. Springer, New York (1999)

    MATH  Google Scholar 

  10. Englis, M.: Berezin and Berezin–Toeplitz quantizations for general function spaces. Rev. Mat. Complut. 19(2), 385–430 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Estrada, R., Fulling, S.A.: Distributional asymptotic expansions of spectral functions and of the associated Green kernels. Electron. J. Differ. Equ. 7, 37 (1999). (electronic)

    MathSciNet  MATH  Google Scholar 

  12. Folland, G.B.: Spherical harmonic expansion of the poisson-szegő kernel for the ball. Proc. Am. Math. Soc. 47(2), 401–408 (1975)

    MATH  Google Scholar 

  13. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier, Academic Press, Amsterdam, 7th edn, Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM. Windows, Macintosh and UNIX (2007)

  14. Hafoud, A., Intissar, A.: Reproducing kernels of eigenspaces of a family of magnetic laplacians on complex projective spaces \(P^n(\mathbb{C})\) and their heat kernels. Afr. J. Math. Phys. 2(2), 143–153 (2005)

    MATH  Google Scholar 

  15. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With Applications to Schrdinger Operators. Springer, New York (2012)

    MATH  Google Scholar 

  16. Kuwabara, R.: Spectrum of the schrödinger operator on a line bundle over complex projective spaces. Tohoku Math. J. Second Ser. 40(2), 199–211 (1988)

    Article  MATH  Google Scholar 

  17. Lablée, O.: Spectral Theory in Riemannian Geometry, European Mathematical Society (2015)

  18. Masani, P., Rosenberg, M.: When is an operator the integral of a given spectral measure? J. Funct. Anal. 21(1), 88–121 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Perelomov, A.: Generalized Coherent States and Their Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  20. Qikeng, L.: The eigen functions of the complex projective space. Acta Math. Sin. 14(1), 1–8 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space, vol. 265. Springer, Dordrecht (2012)

    MATH  Google Scholar 

  22. Sniatycki, J.: Geometric Quantization and Quantum Mechanics, vol. 30. Springer, Berlin (2012)

    MATH  Google Scholar 

  23. Sourour, A.R.: Unbounded operators generated by a given spectral measure. J. Funct. Anal. 29(1), 16–22 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tapan, K., Tushar, B.: Calculation of geometrical coupling coefficients for the hyperspherical harmonics approach. Paramana J. Phys. 28(6), 645–651 (1987)

    Article  Google Scholar 

  25. Unterberger, A., Upmeier, H.: The Berezin transform and invariant differential operators. Commun. Math. Phys. 164(3), 563–597 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Upmeier, H.: Toeplitz–Berezin quantization and non-commutative differential geometry. In: Linear Operators (Warsaw, 1994), Banach Center Publ., vol. 38, pp. 385–400. Polish Academy of Sciences, Warsaw (1997)

  27. Volchkov, V., Volchkov, V.: Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group. Springer, London (2009)

    Book  MATH  Google Scholar 

  28. Genkai, Z.: Berezin transform on line bundles over bounded symmetric domains. J. Lie Theory 10(1), 111–126 (2000)

    MathSciNet  MATH  Google Scholar 

  29. Wu, Y.: Quantization of a particle in a background yangmills field. J. Math. Phys. 39(2), 867–875 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The assistance of the members of the seminars “Partial differential equations and spectral geometry” is gratefully acknowledged, specially Adil Belhaj for his helpful discussion. We also would like to thank the anonymous referee for the helpful remarks and questions related to the content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nour Eddine Askour.

Additional information

Communicated by Behrndt, Colombo and Naboko.

In memory of Professeur Ahmed Intissar (1952–2017).

M. Ziyat is partially supported by the CNRST Grant 56UM5R2015, Morocco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askour, N.E., Intissar, A. & Ziyat, M. Spectral Theory of Magnetic Berezin Transforms on the Complex Projective Space. Complex Anal. Oper. Theory 12, 705–727 (2018). https://doi.org/10.1007/s11785-017-0738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0738-5

Keywords

Mathematics Subject Classification

Navigation