Skip to main content
Log in

Complex Hessian Operator and Generalized Lelong Numbers Associated to a Closed m-Positive Current

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper, we first introduce the generalized Lelong number of an m-positive current T with respect to an m-subharmonic weight \(\varphi \). We also prove two Demailly’s comparison theorems of the generalized Lelong numbers. Then by establishing an estimate for m-capacity \(cap_{m,T}\), we show a new expression of the generalized Lelong number in terms of the \(cap_{m,T}\)-capacity of the sublevel set of \(\varphi \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge–Ampère equation. Invent. Math. 37, 1–44 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford, E., Taylor, B.A.: A new capacity for plurisubharmonic functions. Acta Math. 149, 1–40 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blocki, Z.: Estimates for the complex Monge–Ampère operator. Bull. Pol. Acad. Sci. Math. 41, 151–157 (1993)

    MATH  Google Scholar 

  4. Blocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chou, K.-S., Wang, X.-J.: Variational theory for Hessian equations. Commun. Pure Appl. Math. 54, 1029–1064 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Demailly, J.P.: Mesures de Monge–Ampère et mesures pluriharmoniques. Math. Z. 194, 519–564 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demailly, J.P.: Monge–Ampère Operators, Lelong Numbers and Intersection Theory, Complex Analysis and Geometry. University Series in Mathemaics Plenum, New York (1993)

    MATH  Google Scholar 

  9. Demailly, J. P.: Complex analytic and differential geometry, book available online at: http://www-fourier.ujf-grenoble.fr/~demailly/documents.html

  10. Dhouib, A., Elkhadhra, F.: Complex Hessian operator, \(m\)-capacity, Cegrell’s classes and \(m\)-potential associated to a positive closed current. arXiv:1504.03519

  11. Dinew, S., Kolodziej, S.: A priori estimates for complex Hessian equations. Anal. PDE 7, 227–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinew, S., Kolodziej, S.: Liouville and Calabi–Yau type theorems for complex Hessian equations. arXiv:1203.3995v1

  13. Elkhadhra, F.: Lelong–Demailly numbers in terms of capacity and weak convergence for closed positive currents. Acta Math. Sci. Ser. B Engl. Ed. 33, 1652–1666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hou, Z.: Complex Hessian equation on Kähler manifold. Int. Math. Res. Not. 16, 3098–3111 (2009)

    Article  MATH  Google Scholar 

  15. Hou, Z., Ma, X.-N., Wu, D.: A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17, 547–561 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ivochkina, N., Trudinger, N.S., Wang, X.-J.: The Dirichlet problem for degenerate Hessian equations. Comm. Part. Differ. Equ. 29, 219–235 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klimek, M.: Pluripotential Theory. Clarendon Press, Wotton-under-Edge (1991)

    MATH  Google Scholar 

  18. Labutin, D.: Potential estimates for a class of fully nonlinear elliptic equations. Duke Math. J. 111, 1–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lelong, P.: Fonctionnelles analytiques et fonctions entières (n variables), Séminaire de Mathématiques Supérieures, No. 13 (Été, 1967), Les Presses de l’Université de Montréal, Montreal, Que., p 298 (1968)

  20. Lelong, P., Gruman, L.: Entire Functions of Several Complex Variables. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  21. Li, S.-Y.: On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math. 8(1), 87–106 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, H.C.: Viscosity solutions to complex Hessian equations. J. Funct. Anal. 264, 1355–1379 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, H.C.: Solutions to degenerate complex Hessian equations. J. Math. Pures Appl. 100, 785–805 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lu, H.C.: A variational approach to complex Hessian equations in \(\mathbb{C}^n\). J. Math. Anal. Appl. 431, 228–259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, H.C., Nguyen, V.-D.: Degenerate complex Hessian equations on compact Kähler manifolds. Indiana Univ. Math. J. 64, 1721–1745 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nguyen, N.-C.: Subsolution theorem for the complex Hessian equation. Univ. Lagel. Acta Math. 50, 69–88 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Nguyen, N.-C.: Hölder continuous solutions to complex Hessian equations. Potential Anal. 41, 887–902 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Phong, D.H., Song, J., Sturm, J.: Complex Monge–Ampère equations. Surv. Differ. Geom. 17, 327–411 (2012)

    Article  MATH  Google Scholar 

  29. Sadullaev, A., Abdullaev, B.: Potential theory in the class of m-subharmonic functions. Tr. Mat. Inst. Steklova 279, 166–192 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Sadullaev, A., Abdullaev, B.: Capacities and Hessians in the class of m-subharmonic functions. Dokl. Akad. Nauk 448, 515–517 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Trudinger, N.S., Wang, X.-J.: Hessian measures I. Topol. Methods Nonlinear Anal. 19, 225–239 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Trudinger, N.S., Wang, X.-J.: Hessian measures II. Ann. Math. 150, 579–604 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Trudinger, N.S., Wang, X.-J.: Hessian measures III. J. Funct. Anal. 193, 1–23 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wan, D.: Estimates for k-Hessian operator and some applications. Czech. Math. J. 63, 547–564 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wan, D., Wang, W.: Lelong–Jensen type formula, \(k\)-Hessian boundary measure and Lelong number for \(k\)-convex functions. J. Math. Pures Appl. 99, 635–654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wan, D., Wang, W.: Complex Hessian operator and Lelong number for unbounded m-subharmonic functions. Potential Anal. 44, 53–69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, X.-J.: The \(k\)-Hessian equation, geometric analysis and PDEs. Lect. Notes Math. 2009, 177–252 (1977)

    Google Scholar 

  38. Xing, Y.: Complex Monge–Ampère measures of plurisubharmonic functions with bounded values near the boundary. Canad. J. Math. 52, 1085–1100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongrui Wan.

Additional information

Communicated by Ahmed Sebbar.

This work is supported by National Nature Science Foundation in China (Nos. 11401390, 11571305).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, D. Complex Hessian Operator and Generalized Lelong Numbers Associated to a Closed m-Positive Current. Complex Anal. Oper. Theory 12, 475–489 (2018). https://doi.org/10.1007/s11785-017-0711-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0711-3

Keywords

Navigation